AIMET ONNX Quantization SIM API¶
Top-level API¶
-
class
aimet_onnx.quantsim.
QuantizationSimModel
(model, quant_scheme=<QuantScheme.post_training_tf_enhanced: 2>, rounding_mode='nearest', default_param_bw=8, default_activation_bw=8, use_symmetric_encodings=False, use_cuda=False, config_file=None)¶ Creates a QuantizationSimModel model by adding quantization simulations ops to a given model
Constructor
- Parameters
model (
ModelProto
) – ONNX model or path to modelquant_scheme (
QuantScheme
) – Quantization scheme (e.g. QuantScheme.post_training_tf)rounding_mode (
str
) – Rounding mode (e.g. nearest)default_param_bw (
int
) – Quantization bitwidth for parameterdefault_activation_bw (
int
) – Quantization bitwidth for activationuse_symmetric_encodings (
bool
) – True if symmetric encoding is used. False otherwise.use_cuda (
bool
) – True if using CUDA to run quantization op. False otherwise.config_file (
Optional
[str
]) – Path to Configuration file for model quantizers
Note about Quantization Schemes : Since ONNX Runtime will be used for optimized inference only, ONNX framework will support Post Training Quantization schemes i.e. TF or TF-enhanced to compute the encodings.
The following API can be used to Compute Encodings for Model
-
QuantizationSimModel.
compute_encodings
(forward_pass_callback, forward_pass_callback_args)¶ Compute and return the encodings of each tensor quantizer
- Parameters
forward_pass_callback – A callback function that simply runs forward passes on the model. This callback function should use representative data for the forward pass, so the calculated encodings work for all data samples. This callback internally chooses the number of data samples it wants to use for calculating encodings.
forward_pass_callback_args – These argument(s) are passed to the forward_pass_callback as-is. Up to the user to determine the type of this parameter. E.g. could be simply an integer representing the number of data samples to use. Or could be a tuple of parameters or an object representing something more complex. If set to None, forward_pass_callback will be invoked with no parameters.
The following API can be used to Export the Model to target
-
QuantizationSimModel.
export
(path, filename_prefix)¶ Compute encodings and export to files :type path:
str
:param path: dir to save encoding files :type filename_prefix:str
:param filename_prefix: filename to save encoding files
Code Examples¶
Required imports
from aimet_onnx.quantsim import QuantizationSimModel
from aimet_common.defs import QuantScheme
User should write this function to pass calibration data
def pass_calibration_data(session):
"""
The User of the QuantizationSimModel API is expected to write this function based on their data set.
This is not a working function and is provided only as a guideline.
:param session: Model's session
:return:
"""
# User action required
# The following line of code is an example of how to use the ImageNet data's validation data loader.
# Replace the following line with your own dataset's validation data loader.
data_loader = None # Your Dataset's data loader
# User action required
# For computing the activation encodings, around 1000 unlabelled data samples are required.
# Edit the following 2 lines based on your dataloader's batch size.
# batch_size * max_batch_counter should be 1024
batch_size = 64
max_batch_counter = 16
input_tensor = None # input tensor in session
current_batch_counter = 0
for input_data, _ in data_loader:
session.run(None, input_data)
current_batch_counter += 1
if current_batch_counter == max_batch_counter:
break
Quantize the model and finetune (QAT)
def quantize_model():
onnx_model = Model()
sim = QuantizationSimModel(onnx_model, quant_scheme=QuantScheme.post_training_tf,
rounding_mode='nearest', default_param_bw=8, default_activation_bw=8,
use_symmetric_encodings=False, use_cuda=False)
sim.compute_encodings(pass_calibration_data, None)
# Evaluate the quant sim
forward_pass_function(sim.session)