Source code for aimet_tensorflow.defs

# /usr/bin/env python3.5
# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2018-2020, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

""" Common type definitions that are used across aimet """

from enum import Enum
from typing import List, Optional, Union

import tensorflow as tf

from aimet_common.defs import GreedySelectionParameters


[docs]class ModuleCompRatioPair: """ Pair of tf.Operation and a compression-ratio :ivar module: Module of type tf.Operation :ivar comp_ratio: Compression ratio. Compression ratio is the ratio of cost of compressed model to cost of the original model. """ def __init__(self, module: tf.Operation, comp_ratio: float): self.module = module self.comp_ratio = comp_ratio
[docs]class SpatialSvdParameters: """ Configuration parameters for spatial svd compression """
[docs] class ManualModeParams: """ Configuration parameters for manual-mode spatial svd compression """ def __init__(self, list_of_module_comp_ratio_pairs: List[ModuleCompRatioPair]): """ :param list_of_module_comp_ratio_pairs: List of (module, comp-ratio) pairs """ self.list_of_module_comp_ratio_pairs = list_of_module_comp_ratio_pairs
[docs] class AutoModeParams: """ Configuration parameters for auto-mode compression """ def __init__(self, greedy_select_params: GreedySelectionParameters, modules_to_ignore: Optional[List[tf.Operation]] = None): """ :param greedy_select_params: Params for greedy comp-ratio selection algorithm :param modules_to_ignore: List of modules to ignore (None indicates nothing to ignore) """ self.greedy_params = greedy_select_params self.modules_to_ignore = [] if modules_to_ignore is None else modules_to_ignore
[docs] class Mode(Enum): """ Mode enumeration """ manual = 1 """ Manual mode """ auto = 2 """ Auto mode """
def __init__(self, input_op_names: List[str], output_op_names: List[str], mode: Mode, params: Union[ManualModeParams, AutoModeParams], multiplicity=1): """ :param input_op_names: list of input op names to the model :param output_op_names: List of output op names of the model :param mode: Either auto mode or manual mode :param params: Parameters for the mode selected :param multiplicity: The multiplicity to which ranks/input channels will get rounded. Default: 1 """ self.input_op_names = input_op_names self.output_op_names = output_op_names self.mode = mode self.mode_params = params self.multiplicity = multiplicity
[docs]class ChannelPruningParameters: """ Configuration parameters for channel pruning compression """
[docs] class ManualModeParams: """ Configuration parameters for manual-mode channel pruning compression """ def __init__(self, list_of_module_comp_ratio_pairs: List[ModuleCompRatioPair]): """ :param list_of_module_comp_ratio_pairs: List of (module, comp-ratio) pairs """ self.list_of_module_comp_ratio_pairs = list_of_module_comp_ratio_pairs
[docs] class AutoModeParams: """ Configuration parameters for auto-mode compression """ def __init__(self, greedy_select_params: GreedySelectionParameters, modules_to_ignore: Optional[List[tf.Operation]] = None): """ :param greedy_select_params: Params for greedy comp-ratio selection algorithm :param modules_to_ignore: List of modules to ignore (None indicates nothing to ignore) """ self.greedy_params = greedy_select_params self.modules_to_ignore = [] if modules_to_ignore is None else modules_to_ignore
[docs] class Mode(Enum): """ Mode enumeration """ manual = 1 """ Manual mode: User specifies comp-ratio per layer """ auto = 2 """ Auto mode: aimet computes optimal comp-ratio per layer """
def __init__(self, input_op_names: List[str], output_op_names: List[str], data_set: tf.data.Dataset, batch_size: int, num_reconstruction_samples: int, allow_custom_downsample_ops: bool, mode: Mode, params: Union[ManualModeParams, AutoModeParams], multiplicity=1): """ :param input_op_names: list of input op names to the model :param output_op_names: List of output op names of the model :param data_set: data set :param batch_size: batch size :param num_reconstruction_samples: number of samples to be used for reconstruction :param allow_custom_downsample_ops: If set to True, DownSampleLayer and UpSampleLayer will be added as required :param mode: indicates whether the mode is manual or auto :param params: ManualModeParams or AutoModeParams, depending on teh value of mode :param multiplicity: The multiplicity to which ranks/input channels will get rounded. Default: 1 """ # pylint: disable=too-many-arguments self.input_op_names = input_op_names self.output_op_names = output_op_names self.data_set = data_set self.batch_size = batch_size self.num_reconstruction_samples = num_reconstruction_samples self.allow_custom_downsample_ops = allow_custom_downsample_ops self.mode = mode self.mode_params = params self.multiplicity = multiplicity
class ParameterInfo: """ Store information required for parameter quantization """ def __init__(self, param_type: str, op_with_param_name: List): self.param_type = param_type self.op_with_param_name = op_with_param_name