# /usr/bin/env python3.5
# -*- mode: python -*-
# =============================================================================
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2019-2021, Qualcomm Innovation Center, Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# @@-COPYRIGHT-END-@@
# =============================================================================
""" Top level API for visualizing a pytorch model. """
import os
from typing import List
import torch
from bokeh import plotting
from bokeh.layouts import column
from aimet_torch import plotting_utils
from aimet_torch.utils import get_layer_by_name
[docs]def visualize_changes_after_optimization(
old_model: torch.nn.Module,
new_model: torch.nn.Module,
results_dir: str,
selected_layers: List = None
) -> List[plotting.Figure]:
"""
Visualizes changes before and after some optimization has been applied to a model.
:param old_model: pytorch model before optimization
:param new_model: pytorch model after optimization
:param results_dir: Directory to save the Bokeh plots
:param selected_layers: a list of layers a user can choose to have visualized. If selected layers is None,
all Linear and Conv layers will be visualized.
:return: A list of bokeh plots
"""
file_path = os.path.join(results_dir, 'visualize_changes_after_optimization.html')
plotting.output_file(file_path)
subplots = []
if selected_layers:
for name, module in new_model.named_modules():
if name in selected_layers and hasattr(module, "weight"):
old_model_module = get_layer_by_name(old_model, name)
new_model_module = module
subplots.append(
plotting_utils.visualize_changes_after_optimization_single_layer(
name, old_model_module, new_model_module
)
)
else:
for name, module in new_model.named_modules():
if hasattr(module, "weight") and\
isinstance(module, (torch.nn.modules.conv.Conv2d, torch.nn.modules.linear.Linear)):
old_model_module = get_layer_by_name(old_model, name)
new_model_module = module
subplots.append(
plotting_utils.visualize_changes_after_optimization_single_layer(
name, old_model_module, new_model_module
)
)
plotting.save(column(subplots))
return subplots
[docs]def visualize_weight_ranges(
model: torch.nn.Module,
results_dir: str,
selected_layers: List = None
) -> List[plotting.Figure]:
"""
Visualizes weight ranges for each layer through a scatter plot showing mean plotted against the standard deviation,
the minimum plotted against the max, and a line plot with min, max, and mean for each output channel.
:param model: pytorch model
:param selected_layers: a list of layers a user can choose to have visualized. If selected layers is None,
all Linear and Conv layers will be visualized.
:param results_dir: Directory to save the Bokeh plots
:return: A list of bokeh plots
"""
file_path = os.path.join(results_dir, 'visualize_weight_ranges.html')
plotting.output_file(file_path)
subplots = []
if selected_layers:
for name, module in model.named_modules():
if name in selected_layers and hasattr(module, "weight"):
subplots.append(plotting_utils.visualize_weight_ranges_single_layer(module, name))
else:
for name, module in model.named_modules():
if hasattr(module, "weight") and\
isinstance(module, (torch.nn.modules.conv.Conv2d, torch.nn.modules.linear.Linear)):
subplots.append(plotting_utils.visualize_weight_ranges_single_layer(module, name))
plotting.save(column(subplots))
return subplots
[docs]def visualize_relative_weight_ranges_to_identify_problematic_layers(
model: torch.nn.Module,
results_dir: str,
selected_layers: List = None
) -> List[plotting.Figure]:
"""
For each of the selected layers, publishes a line plot showing weight ranges for each layer, summary statistics
for relative weight ranges, and a histogram showing weight ranges of output channels
with respect to the minimum weight range.
:param model: pytorch model
:param results_dir: Directory to save the Bokeh plots
:param selected_layers: a list of layers a user can choose to have visualized. If selected layers is None,
all Linear and Conv layers will be visualized.
:return: A list of bokeh plots
"""
file_path = os.path.join(results_dir, 'visualize_relative_weight_ranges_to_identify_problematic_layers.html')
plotting.output_file(file_path)
subplots = []
# layer name -> module weights data frame mapping
if not selected_layers:
for name, module in model.named_modules():
if hasattr(module, "weight") and\
isinstance(module, (torch.nn.modules.conv.Conv2d, torch.nn.modules.linear.Linear)):
subplots.append(plotting_utils.visualize_relative_weight_ranges_single_layer(module, name))
else:
for name, module in model.named_modules():
if hasattr(module, "weight") and\
isinstance(module, (torch.nn.modules.conv.Conv2d, torch.nn.modules.linear.Linear)) and\
name in selected_layers:
subplots.append(plotting_utils.visualize_relative_weight_ranges_single_layer(module, name))
plotting.save(column(subplots))
return subplots