AI Model Efficiency Toolkit Logo
tf-torch-cpu_1.27.0
  • Quantization User Guide
    • Use Cases
    • AIMET Quantization Features
    • AIMET Quantization Workflow
    • Debugging Guidelines
  • Compression User Guide
    • Overview
    • Use Case
    • Compression ratio selection
      • Visualization
        • Overview
        • Design
        • Compression
        • Starting a Bokeh Server Session:
        • How to use the tool
    • Model Compression
      • Weight SVD
      • Spatial SVD
      • Channel Pruning
        • Overall Procedure
        • Channel Selection
        • Winnowing
        • Weight Reconstruction
    • Optional techniques to get better compression results
      • Rank Rounding
      • Per-layer Fine-tuning
    • FAQs
    • References
  • API Documentation
    • AIMET APIs for PyTorch
      • PyTorch Model Quantization API
      • PyTorch Model Compression API
        • Introduction
        • Top-level API for Compression
        • Greedy Selection Parameters
        • TAR Selection Parameters
        • Spatial SVD Configuration
        • Weight SVD Configuration
        • Channel Pruning Configuration
        • Configuration Definitions
        • Code Examples
      • PyTorch Model Visualization API for Compression
        • Top-level API Compression
        • Code Examples
      • PyTorch Model Visualization API for Quantization
        • Top-level API Quantization
        • Code Examples
      • PyTorch Debug API
        • Top-level API
        • Enum Definition
        • Code Example
    • AIMET APIs for TensorFlow
      • TensorFlow Model Guidelines
      • TensorFlow Model Quantization API
      • TensorFlow Model Compression API
        • Introduction
        • Top-level API for Compression
        • Greedy Selection Parameters
        • Spatial SVD Configuration
        • Channel Pruning Configuration
        • Configuration Definitions
        • Code Examples
        • Weight SVD Top-level API
        • Code Examples for Weight SVD
      • TensorFlow Model Visualization API for Quantization
        • Top-level API for Visualization of Weight tensors
        • Code Examples for Visualization of Weight tensors
      • Using AIMET Tensorflow APIs with Keras Models
        • Introduction
        • APIs
        • Code Example
        • Utility Functions
      • Tensorflow Debug API
        • Top-level API
        • Code Example
    • AIMET APIs for Keras
      • Keras Model Quantization API
    • AIMET APIs for ONNX
      • ONNX Model Quantization API
    • Indices and tables
  • Examples Documentation
    • Browse the notebooks
    • Running the notebooks
      • Install Jupyter
      • Download the Example notebooks and related code
      • Run the notebooks
  • Installation
    • Release packages
    • System Requirements
    • Installation Instructions
      • Install in Host Machine
        • Install prerequisite packages
        • Install GPU packages for PyTorch or ONNX
        • Install GPU packages for TensorFlow
        • Install AIMET packages
        • Install common debian packages
        • Install tensorflow GPU debian packages
        • Install torch GPU debian packages
        • Install ONNX GPU debian packages
        • Replace Pillow with Pillow-SIMD
        • Replace onnxruntime with onnxruntime-gpu
        • Post installation steps
        • Environment setup
      • Install in Docker Container
        • Set variant
        • Use prebuilt docker image
        • Build docker image locally
        • Start docker container
        • Install AIMET packages
        • Environment setup
AI Model Efficiency Toolkit
  • Welcome to AI Model Efficiency Toolkit API Docs!
  • AIMET Keras APIs
  • View page source
Previous Next

AIMET Keras APIsΒΆ

  • Keras Model Quantization API
Previous Next

© Copyright 2020, Qualcomm Innovation Center, Inc..

Built with Sphinx using a theme provided by Read the Docs.