Source code for aimet_torch.layer_output_utils

# /usr/bin/env python3.8
# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

""" This module contains utilities to capture and save intermediate layer-outputs of a model. """

import os
from typing import Union, Dict, List, Tuple
from enum import Enum
import shutil
import re

import numpy as np
import onnx
import torch

from aimet_common.utils import AimetLogger
from aimet_common.layer_output_utils import SaveInputOutput, save_layer_output_names

from aimet_torch.quantsim import QuantizationSimModel
from aimet_torch import utils
from aimet_torch import torchscript_utils
from aimet_torch.onnx_utils import OnnxSaver, OnnxExportApiArgs
from aimet_torch.qc_quantize_op import QcQuantizeWrapper
from aimet_torch.qc_quantize_recurrent import QcQuantizeRecurrent

logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.LayerOutputs)


[docs]class NamingScheme(Enum): """ Enumeration of layer-output naming schemes. """ PYTORCH = 1 """ Names outputs according to exported pytorch model. Layer names are used. """ ONNX = 2 """ Names outputs according to exported onnx model. Layer output names are generally numeric. """ TORCHSCRIPT = 3 """ Names outputs according to exported torchscript model. Layer output names are generally numeric. """
[docs]class LayerOutputUtil: """ Implementation to capture and save outputs of intermediate layers of a model (fp32/quantsim). """ def __init__(self, model: torch.nn.Module, dir_path: str, naming_scheme: NamingScheme = NamingScheme.PYTORCH, dummy_input: Union[torch.Tensor, Tuple, List] = None, onnx_export_args: Union[OnnxExportApiArgs, Dict] = None): """ Constructor for LayerOutputUtil. :param model: Model whose layer-outputs are needed. :param dir_path: Directory wherein layer-outputs will be saved. :param naming_scheme: Naming scheme to be followed to name layer-outputs. There are multiple schemes as per the exported model (pytorch, onnx or torchscript). Refer the NamingScheme enum definition. :param dummy_input: Dummy input to model. Required if naming_scheme is 'NamingScheme.ONNX' or 'NamingScheme.TORCHSCRIPT'. :param onnx_export_args: Should be same as that passed to quantsim export API to have consistency between layer-output names present in exported onnx model and generated layer-outputs. Required if naming_scheme is 'NamingScheme.ONNX'. """ # Utility to capture layer-outputs self.layer_output = LayerOutput(model=model, naming_scheme=naming_scheme, dir_path=dir_path, dummy_input=dummy_input, onnx_export_args=onnx_export_args) # Utility to save model inputs and their corresponding layer-outputs self.save_input_output = SaveInputOutput(dir_path=dir_path, axis_layout='NCHW')
[docs] def generate_layer_outputs(self, input_batch: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]): """ This method captures output of every layer of a model & saves the inputs and corresponding layer-outputs to disk. :param input_batch: Batch of inputs for which we want to obtain layer-outputs. :return: None """ logger.info("Generating layer-outputs for %d input instances", len(input_batch)) # Obtain layer-output name to output dictionary layer_output_batch_dict = self.layer_output.get_outputs(input_batch) # Place inputs and layer-outputs on CPU input_batch = LayerOutputUtil._get_input_batch_in_numpy(input_batch) layer_output_batch_dict = LayerOutputUtil._get_layer_output_batch_in_numpy(layer_output_batch_dict) # Save inputs and layer-outputs self.save_input_output.save(input_batch, layer_output_batch_dict) logger.info('Successfully generated layer-outputs for %d input instances', len(input_batch))
@staticmethod def _get_input_batch_in_numpy(input_batch: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]) -> \ Union[np.ndarray, List[np.ndarray], Tuple[np.ndarray]]: """ Coverts the torch tensors into numpy arrays :param input_batch: input batch with torch tensors :return: input batch with numpy arrays """ if isinstance(input_batch, (List, Tuple)): numpy_input_batch = [] for ith_input in input_batch: numpy_input_batch.append(ith_input.cpu().numpy()) return numpy_input_batch return input_batch.cpu().numpy() @staticmethod def _get_layer_output_batch_in_numpy(layer_output_dict: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]: """ Converts the torch tensors into numpy arrays :param layer_output_dict: layer output dictionary with torch tensors :return: layer output dictionary with numpy arrays """ layer_output_numpy_dict = {} for output_name, output_tensor in layer_output_dict.items(): layer_output_numpy_dict[output_name] = output_tensor.cpu().numpy() return layer_output_numpy_dict
class LayerOutput: """ This class creates a layer-output name to layer-output dictionary. The layer-output names are as per the AIMET exported pytorch/onnx/torchscript model. """ def __init__(self, model: torch.nn.Module, dir_path: str, naming_scheme: NamingScheme = NamingScheme.PYTORCH, dummy_input: Union[torch.Tensor, Tuple, List] = None, onnx_export_args: Union[OnnxExportApiArgs, Dict] = None): """ Constructor - It initializes few dictionaries that are required for capturing and naming layer-outputs. :param model: Model whose layer-outputs are needed. :param dir_path: Directory wherein layer-output names arranged in topological order will be saved. It will also be used to temporarily save onnx/torchscript equivalent of the given model. :param naming_scheme: Naming scheme to be followed to name layer-outputs. There are multiple schemes as per the exported model (pytorch, onnx or torchscript). Refer the NamingScheme enum definition. :param dummy_input: Dummy input to model (required if naming_scheme is 'onnx'). :param onnx_export_args: Should be same as that passed to quantsim export API to have consistency between layer-output names present in exported onnx model and generated layer-outputs (required if naming_scheme is 'onnx'). """ self.model = model self.module_to_name_dict = utils.get_module_to_name_dict(model=model, prefix='') # Check whether the given model is quantsim model quant_modules = [module for module in model.modules() if isinstance(module, (QcQuantizeWrapper, QcQuantizeRecurrent))] self.is_quantsim_model = bool(quant_modules) # Obtain layer-name to layer-output name mapping self.layer_name_to_layer_output_dict = {} self.layer_name_to_layer_output_name_dict = {} if naming_scheme == NamingScheme.PYTORCH: for name, module in model.named_modules(): if utils.is_leaf_module(module): name = name.replace('._module_to_wrap', '') self.layer_name_to_layer_output_name_dict[name] = name else: self.layer_name_to_layer_output_name_dict = LayerOutput.get_layer_name_to_layer_output_name_map( self.model, naming_scheme, dummy_input, onnx_export_args, dir_path) # Replace any delimiter in layer-output name string with underscore for layer_name, output_name in self.layer_name_to_layer_output_name_dict.items(): self.layer_name_to_layer_output_name_dict[layer_name] = re.sub(r'\W+', "_", output_name) # Save layer-output names which are in topological order of model graph. This order can be used while comparing layer-outputs. layer_output_names = list(self.layer_name_to_layer_output_name_dict.values()) save_layer_output_names(layer_output_names, dir_path) def get_outputs(self, input_batch: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]) -> Dict[str, torch.Tensor]: """ This function captures layer-outputs and renames them as per the AIMET exported pytorch/onnx/torchscript model. :param input_batch: Batch of inputs for which we want to obtain layer-outputs. :return: layer-name to layer-output batch dict """ # Fetch outputs of all the layers self.layer_name_to_layer_output_dict = {} if self.is_quantsim_model: # Apply record-output hook to QuantizeWrapper modules (one node above leaf node in model graph) utils.run_hook_for_layers_with_given_input(self.model, input_batch, self.record_outputs, module_type_for_attaching_hook=(QcQuantizeWrapper, QcQuantizeRecurrent), leaf_node_only=False) else: # Apply record-output hook to Original modules (leaf node in model graph) utils.run_hook_for_layers_with_given_input(self.model, input_batch, self.record_outputs, leaf_node_only=True) # Rename outputs according to pytorch/onnx/torchscript model layer_output_name_to_layer_output_dict = LayerOutput.rename_layer_outputs(self.layer_name_to_layer_output_dict, self.layer_name_to_layer_output_name_dict) return layer_output_name_to_layer_output_dict def record_outputs(self, module: torch.nn.Module, _, output: torch.Tensor): """ Hook function to capture output of a layer. :param module: Layer-module in consideration. :param _: Placeholder for the input of the layer-module. :param output: Output of the layer-module. :return: None """ layer_name = self.module_to_name_dict[module] self.layer_name_to_layer_output_dict[layer_name] = output.clone() @staticmethod def rename_layer_outputs(layer_name_to_layer_output_dict: Dict[str, torch.Tensor], layer_name_to_layer_output_name_dict: Dict[str, str]) -> Dict[str, torch.Tensor]: """ Rename layer-outputs based on the layer-name to layer-output name map :param layer_name_to_layer_output_dict: Dict containing layer-outputs :param layer_name_to_layer_output_name_dict: Dict containing layer-output names :return: layer_output_name_to_layer_output_dict """ layer_names = list(layer_name_to_layer_output_dict.keys()) for layer_name in layer_names: if layer_name in layer_name_to_layer_output_name_dict: # Rename the layer-output by using layer-output name, instead of layer-name layer_output_name = layer_name_to_layer_output_name_dict[layer_name] layer_name_to_layer_output_dict[layer_output_name] = layer_name_to_layer_output_dict.pop(layer_name) else: # Delete the layer-output as it doesn't have a name layer_name_to_layer_output_dict.pop(layer_name) return layer_name_to_layer_output_dict @staticmethod def get_layer_name_to_layer_output_name_map(model, naming_scheme: NamingScheme, dummy_input: Union[torch.Tensor, Tuple, List], onnx_export_args: Union[OnnxExportApiArgs, Dict], dir_path: str) -> Dict[str, str]: """ This function produces layer-name to layer-output name map w.r.t the AIMET exported onnx/torchscript model. If a layer gets expanded into multiple layers in the exported model then the intermediate layers are ignored and output-name of last layer is used. :param model: model :param naming_scheme: onnx/torchscript :param dummy_input: dummy input that is used to construct onnx/torchscript model :param onnx_export_args: OnnxExportApiArgs instance same as that passed to quantsim export API :param dir_path: directory to temporarily save the constructed onnx/torchscrip model :return: dictionary of layer-name to layer-output name """ # Restore original model by removing quantization wrappers if present. original_model = QuantizationSimModel.get_original_model(model) # Set path to store exported onnx/torchscript model. LayerOutput._validate_dir_path(dir_path) exported_model_dir = os.path.join(dir_path, 'exported_models') os.makedirs(exported_model_dir, exist_ok=True) # Get node to i/o tensor name map from the onnx/torchscript model if naming_scheme == NamingScheme.ONNX: exported_model_node_to_io_tensor_map = LayerOutput.get_onnx_node_to_io_tensor_map( original_model, exported_model_dir, dummy_input, onnx_export_args) else: exported_model_node_to_io_tensor_map = LayerOutput.get_torchscript_node_to_io_tensor_map( original_model, exported_model_dir, dummy_input) layer_names_list = [name for name, module in original_model.named_modules() if utils.is_leaf_module(module)] layers_missing_in_exported_model = [] layer_name_to_layer_output_name_map = {} # Get mapping between layer names and layer-output names. logger.info("Layer Name to Layer Output-name Mapping") # pylint: disable=protected-access for layer_name in layer_names_list: if layer_name in exported_model_node_to_io_tensor_map: # pylint: disable=protected-access, unused-variable layer_output_names, intermediate_layer_output_names = QuantizationSimModel._get_layer_activation_tensors( layer_name, exported_model_node_to_io_tensor_map) layer_name_to_layer_output_name_map[layer_name] = layer_output_names[0] logger.info("%s -> %s", layer_name, layer_output_names[0]) else: layers_missing_in_exported_model.append(layer_name) if layers_missing_in_exported_model: logger.warning("The following layers were not found in the exported model:\n" "%s\n" "This can be due to below reason:\n" "\t- The layer was not seen while exporting using the dummy input provided in sim.export(). " "Ensure that the dummy input covers all layers.", layers_missing_in_exported_model) # Delete onnx/torchscript models shutil.rmtree(exported_model_dir, ignore_errors=False, onerror=None) return layer_name_to_layer_output_name_map @staticmethod def get_onnx_node_to_io_tensor_map(model: torch.nn.Module, exported_model_dir: str, dummy_input: Union[torch.Tensor, Tuple, List], onnx_export_args: Union[OnnxExportApiArgs, Dict]) -> Dict[str, Dict]: """ This function constructs an onnx model equivalent to the give pytorch model and then generates node-name to i/o tensor-name map. :param model: pytorch model without quantization wrappers :param exported_model_dir: directory to save onnx model :param dummy_input: dummy input to be used for constructing onnx model :param onnx_export_args: configurations to generate onnx model :return: onnx_node_to_io_tensor_map """ LayerOutput._validate_dummy_input(dummy_input) LayerOutput._validate_onnx_export_args(onnx_export_args) onnx_path = os.path.join(exported_model_dir, 'model.onnx') OnnxSaver.create_onnx_model_with_pytorch_layer_names(onnx_model_path=onnx_path, pytorch_model=model, dummy_input=dummy_input, onnx_export_args=onnx_export_args) onnx_model = onnx.load(onnx_path) onnx_node_to_io_tensor_map, _ = OnnxSaver.get_onnx_node_to_io_tensor_names_map(onnx_model) return onnx_node_to_io_tensor_map @staticmethod def get_torchscript_node_to_io_tensor_map(model: torch.nn.Module, exported_model_dir: str, dummy_input: Union[torch.Tensor, Tuple, List]) -> Dict[str, Dict]: """ This function constructs a torchscript model equivalent to the give pytorch model and then generates node-name to i/o tensor-name map. :param model: pytorch model without quantization wrappers :param exported_model_dir: directory to save onnx model :param dummy_input: dummy input to be used for constructing onnx model :return: torchscript_node_to_io_tensor_map """ LayerOutput._validate_dummy_input(dummy_input) ts_path = os.path.join(exported_model_dir, 'model.torchscript.pth') with utils.in_eval_mode(model), torch.no_grad(): torchscript_utils.create_torch_script_model(ts_path, model, dummy_input) trace = torch.jit.load(ts_path) torch_script_node_to_io_tensor_map, _ = \ torchscript_utils.get_node_to_io_tensor_names_map(model, trace, dummy_input) return torch_script_node_to_io_tensor_map @staticmethod def _validate_dir_path(dir_path: str): """ Validate directory path in which onnx/torchscript models will be temporarily saved :param dir_path: directory path :return: """ if dir_path is None: raise ValueError("Missing directory path to save onnx/torchscript models") @staticmethod def _validate_dummy_input(dummy_input: Union[torch.Tensor, Tuple, List]): """ Validates dummy input which is used to generate onnx/torchscript model :param dummy_input: single input instance :return: """ if not isinstance(dummy_input, (torch.Tensor, tuple, list)): raise ValueError("Invalid dummy_input data-type") @staticmethod def _validate_onnx_export_args(onnx_export_args: Union[OnnxExportApiArgs, Dict]): """ Validates export arguments which are used to generate an onnx model :param onnx_export_args: export arguments :return: """ if onnx_export_args is None: onnx_export_args = OnnxExportApiArgs() if not isinstance(onnx_export_args, (OnnxExportApiArgs, dict)): raise ValueError("Invalid onnx_export_args data-type")