AIMET Keras Quantization SIM API¶
User Guide Link¶
To learn more about Quantization Simulation, please see Quantization Sim
Top-level API¶
-
class
aimet_tensorflow.keras.quantsim.
QuantizationSimModel
(model, quant_scheme='tf_enhanced', rounding_mode='nearest', default_output_bw=8, default_param_bw=8, in_place=False, config_file=None, default_data_type=<QuantizationDataType.int: 1>)[source]¶ Implements mechanism to add quantization simulations ops to a model. This allows for off-target simulation of inference accuracy. Also allows the model to be fine-tuned to counter the effects of quantization.
- Parameters
model – Model to quantize
quant_scheme (
Union
[QuantScheme
,str
]) – Quantization Scheme, currently supported schemes are post_training_tf and post_training_tf_enhanced, defaults to post_training_tf_enhancedrounding_mode (
str
) – The round scheme to used. One of: ‘nearest’ or ‘stochastic’, defaults to ‘nearest’.default_output_bw (
int
) – bitwidth to use for activation tensors, defaults to 8default_param_bw (
int
) – bitwidth to use for parameter tensors, defaults to 8in_place (
bool
) – If True, then the given ‘model’ is modified in-place to add quant-sim nodes. Only suggested use of this option is when the user wants to avoid creating a copy of the modelconfig_file (
Optional
[str
]) – Path to a config file to use to specify rules for placing quant ops in the modeldefault_data_type (
QuantizationDataType
) – Default data type to use for quantizing all layer parameters. Possible options are QuantizationDataType.int and QuantizationDataType.float. Note that the mode default_data_type=QuantizationDataType.float is only supported with default_output_bw=16 and default_param_bw=16
The following API can be used to Compute Encodings for Model
-
QuantizationSimModel.
compute_encodings
(forward_pass_callback, forward_pass_callback_args)[source]¶ Computes encodings for all quantization sim nodes in the model. :param forward_pass_callback: A callback function that is expected to runs forward passes on a model.
This callback function should use representative data for the forward pass, so the calculated encodings work for all data samples.
- Parameters
forward_pass_callback_args – These argument(s) are passed to the forward_pass_callback as-is. Up to the user to determine the type of this parameter. E.g. could be simply an integer representing the number of data samples to use. Or could be a tuple of parameters or an object representing something more complex.
The following API can be used to Export the Model to target
-
QuantizationSimModel.
export
(path, filename_prefix, custom_objects=None, convert_to_pb=True)[source]¶ This method exports out the quant-sim model so it is ready to be run on-target. Specifically, the following are saved 1. The sim-model is exported to a regular Keras model without any simulation ops 2. The quantization encodings are exported to a separate JSON-formatted file that can
then be imported by the on-target runtime (if desired)
- Parameters
path – path where to store model pth and encodings
filename_prefix – Prefix to use for filenames of the model pth and encodings files
custom_objects – If there are custom objects to load, Keras needs a dict of them to map them
Encoding format is described in the Quantization Encoding Specification
Code Examples¶
Required imports
import tensorflow as tf
from aimet_tensorflow.keras import quantsim
Quantize with Fine tuning
def quantize_model():
model = tf.keras.applications.resnet50.ResNet50(weights=None, classes=10)
sim = quantsim.QuantizationSimModel(model)
# Generate some dummy data
dummy_x = np.random.randn(10, 224, 224, 3)
dummy_y = np.random.randint(0, 10, size=(10,))
dummy_y = tf.keras.utils.to_categorical(dummy_y, num_classes=10)
# Compute encodings
sim.model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
sim.compute_encodings(evaluate, forward_pass_callback_args=(dummy_x, dummy_y))
# Do some fine-tuning
sim.model.fit(x=dummy_x, y=dummy_y, epochs=10)