Source code for aimet_torch.v2.nn.fake_quant

# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2024, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================
#pylint: disable=too-many-lines
"""Fake-quantized modules"""

from collections import OrderedDict
from typing import Type, Optional, Tuple
import abc
import warnings

from torch import Tensor
import torch.nn as nn
from torch.nn.modules.adaptive import _ASMoutput
from torch.nn.utils.rnn import PackedSequence
from torch.utils._pytree import tree_map

import aimet_torch.elementwise_ops as aimet_ops

from .base import BaseQuantizationMixin, _BaseQuantizedUnaryOpMixin, _BaseQuantizedBinaryOpMixin, _BaseQuantizedTernaryOpMixin # pylint: disable=import-error


class FakeQuantMeta(abc.ABCMeta):
    """Sets :meth:`forward` to :meth:`quantized_forward` if only :meth:`quantized_forward` is defined
    """

    def __new__(mcs, name, bases, namespace, **kwargs):
        if "quantized_forward" in namespace and "forward" not in namespace:
            warnings.warn("Support for defining `quantized_forward` in place of `forward` method will be deprecated, "
                          "please use `forward` instead.",
                          DeprecationWarning, stacklevel=2)
            namespace["forward"] = namespace["quantized_forward"]
        return super().__new__(mcs, name, bases, namespace, **kwargs)


[docs]class FakeQuantizationMixin(BaseQuantizationMixin, metaclass=FakeQuantMeta): # pylint: disable=abstract-method """Mixin that implements fake-quantization on top of regular pytorch modules. Specifically, a fake-quantized module will quantize input, output, and parameter tensors with its held :class:`QuantizerBase` objects during the :meth:`forward` method and use the inherited :class:torch.nn.Module` forward method to compute the layer operation. If all input, output, and parameter quantizers are ``None``, a fake-quantized module will behave exactly the same as its parent :class:`torch.nn.Module`. A fake-quantized module can be initialized from scratch using the same syntax as the parent module, or can be formed from an existing module using the :meth:`from_module` method. Attributes: input_quantizers (nn.ModuleList): :class:`ModuleList` containing :class:`QuantizerBase` objects to be applied to the layer's input tensors output_quantizers (nn.ModuleList): :class:`ModuleList` containing :class:`QuantizerBase` objects to be applied to the layer's output tensors param_quantizers (nn.ModuleDict): :class:`ModuleDict` mapping parameter names to associated :class:`QuantizerBase` objects Examples: >>> qlinear = FakeQuantizedLinear(in_features=10, out_features=20, bias=False) >>> print(qlinear) FakeQuantizedLinear( in_features=10, out_features=20, bias=False (param_quantizers): ModuleDict( (weight): None ) (input_quantizers): ModuleList( (0): None ) (output_quantizers): ModuleList( (0): None ) ) >>> linear = torch.nn.Linear(in_features=10, out_features=20, bias=True) >>> qlinear = FakeQuantizationMixin.from_module(linear) >>> print(qlinear) FakeQuantizedLinear( in_features=10, out_features=20, bias=True (param_quantizers): ModuleDict( (weight): None (bias): None ) (input_quantizers): ModuleList( (0): None ) (output_quantizers): ModuleList( (0): None ) ) >>> qlinear.weight is linear.weight True """ cls_to_qcls = OrderedDict() # ouantized class -> original class qcls_to_cls = OrderedDict() # original class -> quantized class
[docs] @abc.abstractmethod def forward(self, *args, **kwargs): """Computes a fake-quantized version of the parent module's forward method. The :meth:`forward` method should perform the following logic in order: 1) Apply existing input quantizers to input tensors 2) Apply existing param quantizers to the layer's parameters 3) Call the inherited :class:`torch.nn.Module` forward method with quantized inputs and parameters 4) Apply existing output quantizers to the outputs of the forward method If all input, output, and parameter quantizers are ``None``, this method will behave exactly the same as its parent module's forward pass. """ return super().forward(*args, **kwargs)
@classmethod def wrap(cls, module_cls: Type[nn.Module]) -> Type[nn.Module]: """ Wrap a regular module class into a fake-quantized module class """ if not issubclass(module_cls, nn.Module): raise ValueError("Expected module_cls to be a subclass of torch.nn.Module. " f"Got {module_cls}.") if module_cls in cls.cls_to_qcls: return cls.cls_to_qcls[module_cls] quantized_cls_name = f"FakeQuantized{module_cls.__name__}" base_classes = (cls, module_cls) quantized_cls = type(quantized_cls_name, base_classes, {'__module__': __name__}) return cls.implements(module_cls)(quantized_cls)
[docs] @classmethod def implements(cls, module_cls): """Decorator for registering a fake-quantized implementation of the given base class. This decorator registers the defined class as the fake-quantized version of module_cls such that calling :meth:`from_module` on an instance of module_cls will output an instance of the decorated class. Args: module_cls: The base :class:`torch.nn.Module` class """ def wrapper(quantized_cls): cls.cls_to_qcls[module_cls] = quantized_cls cls.qcls_to_cls[quantized_cls] = module_cls return quantized_cls return wrapper
class _FakeQuantizedUnaryOpMixin(_BaseQuantizedUnaryOpMixin, FakeQuantizationMixin): # pylint: disable=abstract-method pass class _FakeQuantizedBinaryOpMixin(_BaseQuantizedBinaryOpMixin, FakeQuantizationMixin): # pylint: disable=abstract-method pass class _FakeQuantizedTernaryOpMixin(_BaseQuantizedTernaryOpMixin, FakeQuantizationMixin): # pylint: disable=abstract-method pass ######################## ### torch.nn.Modules ### ######################## # Below are the lists of modules with regular code patterns # that takes tensors as the first N arguments and returns single tensor as output _TORCH_NN_UNARY_MODULES = [ nn.AdaptiveAvgPool1d, nn.AdaptiveAvgPool2d, nn.AdaptiveAvgPool3d, nn.AdaptiveMaxPool1d, nn.AdaptiveMaxPool2d, nn.AdaptiveMaxPool3d, nn.AlphaDropout, nn.AvgPool1d, nn.AvgPool2d, nn.AvgPool3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.CELU, nn.ChannelShuffle, nn.ConstantPad1d, nn.ConstantPad2d, nn.ConstantPad3d, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d, nn.CrossMapLRN2d, nn.Dropout, # nn.Dropout1d, # Not supported in torch < 1.12 nn.Dropout2d, nn.Dropout3d, nn.ELU, nn.FeatureAlphaDropout, nn.Flatten, nn.Fold, nn.FractionalMaxPool2d, nn.FractionalMaxPool3d, nn.GELU, nn.GLU, nn.GroupNorm, nn.Hardshrink, nn.Hardsigmoid, nn.Hardswish, nn.Hardtanh, nn.Identity, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LPPool1d, nn.LPPool2d, nn.LayerNorm, nn.LeakyReLU, nn.Linear, nn.LocalResponseNorm, nn.LogSigmoid, nn.LogSoftmax, nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d, nn.MaxUnpool1d, nn.MaxUnpool2d, nn.MaxUnpool3d, nn.Mish, nn.PReLU, nn.PixelShuffle, nn.PixelUnshuffle, nn.RReLU, nn.ReLU, nn.ReLU6, nn.ReflectionPad1d, nn.ReflectionPad2d, # nn.ReflectionPad3d, # Not supported in torch < 1.10 nn.ReplicationPad1d, nn.ReplicationPad2d, nn.ReplicationPad3d, nn.SELU, nn.SiLU, nn.Sigmoid, nn.Softmax, nn.Softmax2d, nn.Softmin, nn.Softplus, nn.Softshrink, nn.Softsign, nn.SyncBatchNorm, nn.Tanh, nn.Tanhshrink, nn.Threshold, nn.Unflatten, nn.Unfold, nn.Upsample, nn.UpsamplingBilinear2d, nn.UpsamplingNearest2d, nn.ZeroPad2d, ] _TORCH_NN_BINARY_MODULES = [ nn.BCELoss, nn.BCEWithLogitsLoss, nn.Bilinear, nn.CTCLoss, nn.CosineSimilarity, nn.CrossEntropyLoss, nn.HingeEmbeddingLoss, nn.HuberLoss, nn.KLDivLoss, nn.L1Loss, nn.MSELoss, nn.MultiLabelMarginLoss, nn.MultiLabelSoftMarginLoss, nn.MultiMarginLoss, nn.NLLLoss, nn.NLLLoss2d, nn.PairwiseDistance, nn.PoissonNLLLoss, nn.SmoothL1Loss, nn.SoftMarginLoss, ] _TORCH_NN_TERNARY_MODULES = [ nn.CosineEmbeddingLoss, nn.GaussianNLLLoss, nn.MarginRankingLoss, nn.TripletMarginLoss, nn.TripletMarginWithDistanceLoss, ] def _register_global_variable(var_name, obj): if var_name in globals(): raise RuntimeError(f'Variable name "{var_name}" already exists in the global namespace.') globals().update({var_name: obj}) # Auto-generate quantized module definitions for regular-patterned modules for _module_cls in _TORCH_NN_UNARY_MODULES: _quantized_cls = _FakeQuantizedUnaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) for _module_cls in _TORCH_NN_BINARY_MODULES: _quantized_cls = _FakeQuantizedBinaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) for _module_cls in _TORCH_NN_TERNARY_MODULES: _quantized_cls = _FakeQuantizedTernaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) @FakeQuantizationMixin.implements(nn.Embedding) class FakeQuantizedEmbedding(FakeQuantizationMixin, nn.Embedding): """ Quantized class definition for nn.Embedding. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([]) # nn.Embedding takes no float input self.output_quantizers = nn.ModuleList([None]) def forward(self, input: Tensor) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for nn.Embedding. """ # pylint: disable=redefined-builtin with self._patch_quantized_parameters(): output = super().forward(input) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(nn.EmbeddingBag) class FakeQuantizedEmbeddingBag(FakeQuantizationMixin, nn.EmbeddingBag): """ Quantized class definition for nn.EmbeddingBag. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None]) self.output_quantizers = nn.ModuleList([None]) def forward(self, # pylint: disable=arguments-differ input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor: """ Quantized forward impl for nn.EmbeddingBag. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: per_sample_weights = self.input_quantizers[0](per_sample_weights) with self._patch_quantized_parameters(): output = super().forward(input, offsets, per_sample_weights) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output class _FakeQuantizedRNNBaseMixin(FakeQuantizationMixin): def __quant_init__(self): super().__quant_init__() self.input_quantizers = nn.ModuleList([None, None]) self.output_quantizers = nn.ModuleList([None, None]) def forward(self, input, hx: Optional[Tensor] = None): # pylint: disable=arguments-differ """ Quantized forward impl for nn.GRU and nn.RNN. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: if isinstance(input, PackedSequence): data, *others = input quantized_data = self.input_quantizers[0](data) input = PackedSequence(quantized_data, *others) else: input = self.input_quantizers[0](input) if hx is not None and self.input_quantizers[1]: hx = self.input_quantizers[1](hx) with self._patch_quantized_parameters(): output, hidden = super().forward(input, hx) if self.output_quantizers[0]: if isinstance(output, PackedSequence): data, *others = output quantized_data = self.output_quantizers[0](data) output = PackedSequence(quantized_data, *others) else: output = self.output_quantizers[0](output) if self.output_quantizers[1]: hidden = self.output_quantizers[1](hidden) return output, hidden FakeQuantizedGRU = _FakeQuantizedRNNBaseMixin.wrap(nn.GRU) FakeQuantizedRNN = _FakeQuantizedRNNBaseMixin.wrap(nn.RNN) class _FakeQuantizedRNNCellBaseMixin(FakeQuantizationMixin): def __quant_init__(self): super().__quant_init__() self.input_quantizers = nn.ModuleList([None, None]) self.output_quantizers = nn.ModuleList([None]) def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for nn.GRUCell and nn.RNNCell. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: input = self.input_quantizers[0](input) if hx is not None and self.input_quantizers[1]: hx = self.input_quantizers[1](hx) with self._patch_quantized_parameters(): output = super().forward(input, hx) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output FakeQuantizedGRUCell = _FakeQuantizedRNNCellBaseMixin.wrap(nn.GRUCell) FakeQuantizedRNNCell = _FakeQuantizedRNNCellBaseMixin.wrap(nn.RNNCell) @FakeQuantizationMixin.implements(nn.LSTM) class FakeQuantizedLSTM(FakeQuantizationMixin, nn.LSTM): """ Quantized class definition for nn.LSTM. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, nn.ModuleList([None, None])]) self.output_quantizers = nn.ModuleList([None, nn.ModuleList([None, None])]) def forward(self, input, hx: Optional[Tuple[Tensor, Tensor]] = None): # pylint: disable=arguments-differ """ Quantized forward impl for nn.LSTM. """ # pylint: disable=redefined-builtin if isinstance(input, PackedSequence) and self.input_quantizers[0]: data, *others = input quantized_data = self.input_quantizers[0](data) input = PackedSequence(quantized_data, *others) if hx is not None: h, c = hx h_quantizer, c_quantizer = self.input_quantizers[1] if h_quantizer: h = h_quantizer(h) if c_quantizer: c = c_quantizer(c) hx = (h, c) with self._patch_quantized_parameters(): output, hidden = super().forward(input, hx) if self.output_quantizers[0]: if isinstance(output, PackedSequence): data, *others = output quantized_data = self.output_quantizers[0](data) output = PackedSequence(quantized_data, *others) else: output = self.output_quantizers[0](output) h_n, c_n = hidden h_quantizer, c_quantizer = self.output_quantizers[1] if h_quantizer: h_n = h_quantizer(h_n) if c_quantizer: c_n = c_quantizer(c_n) hidden = (h_n, c_n) return output, hidden @FakeQuantizationMixin.implements(nn.LSTMCell) class FakeQuantizedLSTMCell(FakeQuantizationMixin, nn.LSTMCell): """ Quantized class definition for nn.LSTMCell. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, nn.ModuleList([None, None])]) self.output_quantizers = nn.ModuleList([None]) def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None): # pylint: disable=arguments-differ """ Quantized forward impl for nn.LSTMCell. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: input = self.input_quantizers[0](input) if hx is not None: h, c = hx h_quantizer, c_quantizer = self.input_quantizers[1] if h_quantizer: h = h_quantizer(h) if c_quantizer: c = c_quantizer(c) hx = (h, c) with self._patch_quantized_parameters(): output = super().forward(input, hx) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(nn.AdaptiveLogSoftmaxWithLoss) class FakeQuantizedAdaptiveLogSoftmaxWithLoss(FakeQuantizationMixin, nn.AdaptiveLogSoftmaxWithLoss): """ Quantized class definition for nn.AdaptiveLogSoftmaxWithLoss. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, None]) self.output_quantizers = nn.ModuleList([None, None]) def forward(self, input_: Tensor, target_: Tensor) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for nn.AdaptiveLogSoftmaxWithLoss. """ if self.input_quantizers[0]: input_ = self.input_quantizers[0](input_) if self.input_quantizers[1]: target_ = self.input_quantizers[1](target_) with self._patch_quantized_parameters(): outputs = super().forward(input_, target_) output, loss = outputs if self.output_quantizers[0]: output = self.output_quantizers[0](output) if self.output_quantizers[1]: loss = self.output_quantizers[1](loss) return _ASMoutput(output, loss) # Quantized definitions of the following nn.Modules are intentionally omitted: # * nn.MultiheadAttention # * nn.Transformer # * nn.TransformerDecoder # * nn.TransformerDecoderLayer # * nn.TransformerEncoder # * nn.TransformerEncoderLayer ########################### ### AIMET V1 custom ops ### ########################### # These class names are already occupied by torch.nn.Modules. # To avoid name collision, we add prefix "Aimet" to the variable names as an ad-hoc workaraound. FakeQuantizedAimetChannelShuffle = _FakeQuantizedUnaryOpMixin.wrap(aimet_ops.ChannelShuffle) FakeQuantizedAimetMaxPool2d = _FakeQuantizedUnaryOpMixin.wrap(aimet_ops.MaxPool2d) FakeQuantizedAimetAdaptiveAvgPool2d = _FakeQuantizedUnaryOpMixin.wrap(aimet_ops.AdaptiveAvgPool2d) FakeQuantizedAimetAvgPool2d = _FakeQuantizedUnaryOpMixin.wrap(aimet_ops.AvgPool2d) _AIMET_V1_UNARY_MODULES = [ aimet_ops.AMax, aimet_ops.AMin, aimet_ops.Cast, aimet_ops.DepthToSpaceCRDMode, aimet_ops.DepthToSpaceDCRMode, aimet_ops.OneHot, aimet_ops.Exponential, aimet_ops.Erf, aimet_ops.Sqrt, aimet_ops.Log, aimet_ops.Abs, aimet_ops.Neg, aimet_ops.ElementwiseCeil, aimet_ops.ElementwiseFloor, aimet_ops.Sin, aimet_ops.Cos, aimet_ops.Asin, aimet_ops.Atan, aimet_ops.Round, aimet_ops.LogicalNot, aimet_ops.NonZero, aimet_ops.ElementwiseUnarySign, aimet_ops.RSqRt, aimet_ops.Square, aimet_ops.Mean, aimet_ops.Sum, aimet_ops.Prod, aimet_ops.Argmin, aimet_ops.Argmax, aimet_ops.Gather, aimet_ops.Reshape, aimet_ops.RoiAlign, aimet_ops.Permute, aimet_ops.IndexSelect, aimet_ops.TopK, aimet_ops.Tile, aimet_ops.Norm, aimet_ops.CumSum, aimet_ops.Interpolate, aimet_ops.Normalize, aimet_ops.Pad, aimet_ops.Shape, aimet_ops.Expand, aimet_ops.StridedSlice, ] _AIMET_V1_BINARY_MODULES = [ aimet_ops.MatMul, aimet_ops.Add, aimet_ops.Multiply, aimet_ops.Subtract, aimet_ops.Divide, aimet_ops.FloorDivide, aimet_ops.Greater, aimet_ops.Less, aimet_ops.GreaterEqual, aimet_ops.LessEqual, aimet_ops.NotEqual, aimet_ops.Equal, aimet_ops.Remainder, aimet_ops.Fmod, aimet_ops.Pow, aimet_ops.CustomSiLU, aimet_ops.Maximum, aimet_ops.Max, aimet_ops.Minimum, aimet_ops.Min, aimet_ops.Bmm, aimet_ops.LogicalOr, aimet_ops.LogicalAnd, aimet_ops.CustomGather, aimet_ops.GatherNd, ] _AIMET_V1_TERNARY_MODULES = [ aimet_ops.Baddbmm, aimet_ops.Addmm, aimet_ops.ScatterND, aimet_ops.DynamicConv2d, aimet_ops.DynamicLinear, aimet_ops.ScatterElements, ] # Auto-generate quantized module definitions for regular-patterned modules for _module_cls in _AIMET_V1_UNARY_MODULES: _quantized_cls = _FakeQuantizedUnaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) for _module_cls in _AIMET_V1_BINARY_MODULES: _quantized_cls = _FakeQuantizedBinaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) for _module_cls in _AIMET_V1_TERNARY_MODULES: _quantized_cls = _FakeQuantizedTernaryOpMixin.wrap(_module_cls) _register_global_variable(_quantized_cls.__name__, _quantized_cls) @FakeQuantizationMixin.implements(aimet_ops.BatchNorm) class FakeQuantizedBatchNorm(FakeQuantizationMixin, aimet_ops.BatchNorm): # pylint: disable=abstract-method """ Quantized class definition for aimet_ops.BatchNorm. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, None, None, None, None]) def forward(self, # pylint: disable=too-many-arguments, arguments-differ input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.1, eps: float = 1e-5) -> Tensor: """ Quantized forward impl for aimet_ops.BatchNorm. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: input = self.input_quantizers[0](input) if running_mean is not None and self.input_quantizers[1]: running_mean = self.input_quantizers[1](running_mean) if running_var is not None and self.input_quantizers[2]: running_var = self.input_quantizers[2](running_var) if weight is not None and self.input_quantizers[3]: weight = self.input_quantizers[3](weight) if bias is not None and self.input_quantizers[4]: bias = self.input_quantizers[4](bias) output = super().forward(input, running_mean, running_var, weight, bias, training, momentum, eps) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(aimet_ops.GroupNorm) class FakeQuantizedAimetGroupNorm(FakeQuantizationMixin, aimet_ops.GroupNorm): # pylint: disable=abstract-method """ Quantized class definition for aimet_ops.GroupNorm. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, None, None, None]) def forward(self, # pylint: disable=arguments-differ input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5) -> Tensor: """ Quantized forward impl for aimet_ops.GroupNorm. """ # pylint: disable=redefined-builtin if self.input_quantizers[0]: input = self.input_quantizers[0](input) if weight is not None and self.input_quantizers[2]: weight = self.input_quantizers[2](weight) if bias is not None and self.input_quantizers[3]: bias = self.input_quantizers[3](bias) output = super().forward(input, num_groups, weight, bias, eps) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(aimet_ops.NonMaxSuppression) class FakeQuantizedNonMaxSuppression(FakeQuantizationMixin, aimet_ops.NonMaxSuppression): """ Quantized class definition for aimet_ops.NonMaxSuppression. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None]) self.output_quantizers = nn.ModuleList([None]) def forward(self, *args) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for aimet_ops.NonMaxSuppression. """ boxes, scores = args # boxes are integer tensors if self.input_quantizers[0]: # Use same input quantizer for all the score tensors scores = tree_map(self.input_quantizers[0], scores) output = super().forward(boxes, scores) if self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(aimet_ops.Split) class FakeQuantizedSplit(FakeQuantizationMixin, aimet_ops.Split): """ Quantized class definition for aimet_ops.Split. """ def forward(self, *args, **kwargs): # pylint: disable=arguments-differ """ Quantized forward impl for aimet_ops.Split. """ x, *others = args if x.is_floating_point() and self.input_quantizers[0]: x = self.input_quantizers[0](x) outputs = super().forward(x, *others, **kwargs) if self.output_quantizers[0]: # Use same output quantizer for all the output tensors quantize_fn = lambda out: self.output_quantizers[0](out) if out.is_floating_point() else out outputs = tree_map(quantize_fn, outputs) return outputs @FakeQuantizationMixin.implements(aimet_ops.Concat) class FakeQuantizedConcat(FakeQuantizationMixin, aimet_ops.Concat): """ Quantized class definition for aimet_ops.Concat. """ _num_inputs: int def __quant_init__(self): super().__quant_init__() self._num_inputs = 1 def export_input_encodings(self): """ Extends super().export to repeat input quantizer's encodings :attr:`self._num_inputs` times """ input_encodings = super().export_input_encodings() return input_encodings * self._num_inputs def import_input_encodings(self, encodings, strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): """ Extends super().import_input_encodings to set `self._num_inputs` based on length of encodings. """ self._num_inputs = len(encodings) super().import_input_encodings(encodings, strict=strict, partial=partial, requires_grad=requires_grad, allow_overwrite=allow_overwrite) def forward(self, *x): # pylint: disable=arguments-differ """ Quantized forward impl for aimet_ops.Concat. """ self._num_inputs = len(x) if self.input_quantizers[0]: # Use same input quantizer for all the input tensors quantize_fn = lambda inp: self.input_quantizers[0](inp) if inp.is_floating_point() else inp x = tree_map(quantize_fn, x) output = super().forward(*x) if output.is_floating_point() and self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(aimet_ops.Where) class FakeQuantizedWhere(FakeQuantizationMixin, aimet_ops.Where): # pylint: disable=abstract-method """ Quantized class definition for aimet_ops.Where. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, None, None]) self.output_quantizers = nn.ModuleList([None]) def forward(self, condition: Tensor, input, other, **kwargs) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for aimet_ops.MaskedFill. """ # pylint: disable=redefined-builtin if isinstance(input, Tensor) and input.is_floating_point() and self.input_quantizers[1]: input = self.input_quantizers[1](input) if isinstance(other, Tensor) and other.is_floating_point() and self.input_quantizers[2]: other = self.input_quantizers[2](other) output = super().forward(condition, input, other, **kwargs) if output.is_floating_point() and self.output_quantizers[0]: output = self.output_quantizers[0](output) return output @FakeQuantizationMixin.implements(aimet_ops.MaskedFill) class FakeQuantizedMaskedFill(FakeQuantizationMixin, aimet_ops.MaskedFill): # pylint: disable=abstract-method """ Quantized class definition for aimet_ops.MaskedFill. """ def __quant_init__(self): super().__quant_init__() # pylint: disable=attribute-defined-outside-init self.input_quantizers = nn.ModuleList([None, None]) self.output_quantizers = nn.ModuleList([None]) def forward(self, mask: Tensor, value) -> Tensor: # pylint: disable=arguments-differ """ Quantized forward impl for aimet_ops.MaskedFill. """ if isinstance(value, Tensor) and value.is_floating_point() and self.input_quantizers[1]: value = self.input_quantizers[1](value) output = super().forward(mask, value) if output.is_floating_point() and self.output_quantizers[0]: output = self.output_quantizers[0](output) return output