aimet_torch.utils¶
- aimet_torch.utils.remove_all_quantizers(modules)[source]¶
Temporarily remove all quantizers
Example
>>> print(sim.model) Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) ) >>> with remove_all_quantizers(sim.model): ... print(sim.model) ... Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): None (bias): None ) (input_quantizers): ModuleList( (0): None ) (output_quantizers): ModuleList( (0): None ) ) )
- aimet_torch.utils.remove_activation_quantizers(modules)[source]¶
Temporarily remove all input and output quantizers
Example
>>> print(sim.model) Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) ) >>> with remove_activation_quantizers(sim.model): ... print(sim.model) ... Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): None ) (output_quantizers): ModuleList( (0): None ) ) )
- aimet_torch.utils.remove_param_quantizers(modules)[source]¶
Temporarily remove all parameter quantizers
Example
>>> print(sim.model) Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) ) >>> with remove_param_quantizers(sim.model): ... print(sim.model) ... Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): None (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) )
- aimet_torch.utils.remove_input_quantizers(modules)[source]¶
Temporarily remove all input quantizers
Example
>>> print(sim.model) Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) ) >>> with remove_input_quantizers(sim.model): ... print(sim.model) ... Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): None ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) )
- aimet_torch.utils.remove_output_quantizers(modules)[source]¶
Temporarily remove all output quantizers
Example
>>> print(sim.model) Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) ) ) >>> with remove_output_quantizers(sim.model): ... print(sim.model) ... Sequential( (0): QuantizedConv2d( 3, 3, kernel_size=(3, 3), stride=(1, 1) (param_quantizers): ModuleDict( (weight): QuantizeDequantize(shape=(3, 1, 1, 1), qmin=-128, qmax=127, symmetric=True) (bias): None ) (input_quantizers): ModuleList( (0): QuantizeDequantize(shape=(), qmin=0, qmax=255, symmetric=False) ) (output_quantizers): ModuleList( (0): None ) ) )