# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================
# pylint: disable=redefined-builtin, too-many-lines
"""Affine quantizers"""
from itertools import chain, repeat
from typing import Dict, List, Optional, overload, Protocol, runtime_checkable, Tuple
import contextlib
import functools
import torch
from torch import nn
from aimet_torch.v2.utils import (
    patch_attr,
    _is_expandable,
    StatisticsNotFoundError,
    docstring,
)
from aimet_torch.v2.quantization.encoding_analyzer import (
    EncodingAnalyzer,
    MinMaxEncodingAnalyzer,
    _flag_extreme_min_max,
)
from aimet_torch.v2.quantization.affine import AffineEncoding, GroupedBlockEncoding
from aimet_torch.v2.quantization.tensor import QuantizedTensor, DequantizedTensor
from aimet_torch.v2.quantization.base import QuantizerBase
from aimet_torch.v2.quantization.affine.backends import (
    quantize,
    quantize_dequantize,
    dequantize,
    torch_builtins,
    _derive_qmin_qmax,
)
from aimet_torch.v2.utils import ste_round
from aimet_torch.v2.deepspeed_utils import SafeGatheredParameters
from ._utils import _GridMixin, _register_signature
__all__ = [
    "AffineQuantizerBase",
    "Dequantize",
    "GroupedBlockQuantizeDequantize",
    "MinMaxQuantizer",
    "Quantize",
    "QuantizeDequantize",
    "ScaleOffsetQuantizer",
]
class AffineQuantizerBase(QuantizerBase, _GridMixin):  # pylint: disable=too-many-instance-attributes
    """
    Base class for linear quantization modules.
    Args:
        shape (tuple): Shape of the quantization parameters
        bitwidth (int): Quantization bitwidth
        symmetric (bool): If True, performs symmetric quantization;
                          otherwise, performs asymmetric quantization
        encoding_analyzer (EncodingAnalyzer, optional): Encoding analyzer for calibrating quantization encodings
                                                        (default: absolute min-max encoding analyzer)
    """
    _init_signatures = []
    @overload
    @_register_signature(_init_signatures)
    def __init__(
        self,
        shape,
        qmin: int,
        qmax: int,
        symmetric: bool,
        encoding_analyzer: EncodingAnalyzer = None,
        block_size: Optional[Tuple[int, ...]] = None,
        zero_point_shift: Optional[float] = None,
    ): ...
    @overload
    @_register_signature(_init_signatures)
    def __init__(
        self,
        shape,
        bitwidth: int,
        symmetric: bool,
        encoding_analyzer: EncodingAnalyzer = None,
        block_size: Optional[Tuple[int, ...]] = None,
        zero_point_shift: Optional[float] = None,
    ): ...
    def __init__(self, shape, *args, **kwargs):
        super().__init__()
        if isinstance(shape, int):
            shape = (shape,)
        self.shape = tuple(shape)
        full_args = (shape, *args)
        # Pad positional args with None's such that len(args) == 6
        args = tuple(chain(args, repeat(None, 6 - len(args))))
        arg0 = kwargs.pop("qmin", kwargs.pop("bitwidth", args[0]))
        arg1 = kwargs.pop("qmax", args[1])
        if arg1 is not None and not isinstance(arg1, bool):
            # (arg0, arg1, arg2) == (qmin, qmax, symmetric)
            qmin, qmax = arg0, arg1
            symmetric = kwargs.pop("symmetric", args[2])
            if (qmin is None) or (qmax is None) or (symmetric is None):
                raise self._arg_parsing_error(full_args, kwargs)
            encoding_analyzer = kwargs.pop("encoding_analyzer", args[3])
            block_size = kwargs.pop("block_size", args[4])
            zero_point_shift = kwargs.pop("zero_point_shift", args[5])
        else:
            # (arg0, arg1) == (bitwidth, symmetric)
            bitwidth = arg0
            symmetric = kwargs.pop("symmetric", args[1])
            if (bitwidth is None) or (symmetric is None):
                raise self._arg_parsing_error(full_args, kwargs)
            # We support two quantization modes: (unsigned) asymmetric and signed-symmetric
            qmin, qmax = _derive_qmin_qmax(bitwidth=bitwidth, signed=symmetric)
            encoding_analyzer = kwargs.pop("encoding_analyzer", args[2])
            block_size = kwargs.pop("block_size", args[3])
            zero_point_shift = kwargs.pop("zero_point_shift", args[4])
        assert qmin is not None
        assert qmax is not None
        if kwargs:
            cls = type(self).__qualname__
            unexpected_keys = ", ".join(kwargs.keys())
            raise TypeError(
                f"{cls}.__init__ got unexpected keyword argument: {unexpected_keys}"
            )
        if qmin >= qmax:
            raise ValueError(
                f"qmax should be strictly larger than qmin. Got qmax={qmax}, qmin={qmin}"
            )
        self.qmin = qmin
        self.qmax = qmax
        self._symmetric = symmetric
        self.block_size = block_size
        self.zero_point_shift = zero_point_shift or 0.0
        if self.zero_point_shift not in [0.0, 0.5]:
            raise ValueError(
                f"zero_point_shift should be 0.0 or 0.5. Got {self.zero_point_shift}"
            )
        self.encoding_analyzer = encoding_analyzer or MinMaxEncodingAnalyzer(
            torch_builtins.get_encoding_shape_with_blocks(self.shape, self.block_size)
        )
        if self.block_size is None and not _is_expandable(
            self.encoding_analyzer.observer.shape, self.shape
        ):
            raise RuntimeError(
                f"Encoding analyzer of shape {self.encoding_analyzer.observer.shape} "
                f"is incompatible with quantizer of shape {self.shape}."
            )
        self._reparametrize_to_min_max()
    def _is_scale_offset_quantizer(self):
        return "scale" in self._parameters and "offset" in self._parameters
    def _is_min_max_quantizer(self):
        return "min" in self._parameters and "max" in self._parameters
    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError as e:
            if (name in ("min", "max") and self._is_scale_offset_quantizer()) or (
                name in ("scale", "offset") and self._is_min_max_quantizer()
            ):
                param_names = "/".join(self._parameters.keys())
                msg = (
                    f"'{type(self).__qualname__}' object has no attribute '{name}' "
                    f"because it's parametrized with {param_names}. "
                    f"To get '{name}' of this quantizer, use qtzr.get_{name}() instead. "
                    "To assign a new input range to this quantizer, use qtzr.set_range() instead"
                )
                raise AttributeError(msg) from e
            raise e
    def _reparametrize_to_scale_offset(self):
        # pylint: disable=attribute-defined-outside-init
        if self._is_scale_offset_quantizer():
            return
        is_initialized = self.is_initialized()
        self.register_quantization_parameter(
            "scale", nn.Parameter(torch.ones(self.shape))
        )
        self.register_quantization_parameter(
            "offset",
            None
            if self.symmetric
            else torch.nn.Parameter(
                _get_symmetric_offset(
                    self.qmin, self.qmax, self.shape, torch.float32, "cpu"
                )
            ),
        )
        if self._is_min_max_quantizer():
            min = self._parameters.pop("min")
            max = self._parameters.pop("max")
            self.requires_grad_(min.requires_grad or max.requires_grad)
            # NOTE: Only follow the device, but NOT the dtype of min & max.
            #       Scale & offset should be always kept in float32 for numerical stability
            self.to(device=min.device, dtype=torch.float32)
            if is_initialized:
                self.set_range(min, max)
    def _reparametrize_to_min_max(self):
        # pylint: disable=attribute-defined-outside-init
        if self._is_min_max_quantizer():
            return
        is_initialized = self.is_initialized()
        self.register_quantization_parameter(
            "min", nn.Parameter(-torch.ones(self.shape))
        )
        self.register_quantization_parameter(
            "max", nn.Parameter(torch.ones(self.shape))
        )
        if self._is_scale_offset_quantizer():
            scale = self._parameters.pop("scale")
            offset = self._parameters.pop("offset")
            self.requires_grad_(
                scale.requires_grad or getattr(offset, "requires_grad", False)
            )
            self.to(device=scale.device, dtype=scale.dtype)
            if is_initialized:
                min, max = _get_min_max(scale, offset, self.qmin, self.qmax)
                self.set_range(min, max)
    def get_min(self, dtype=None) -> Optional[torch.Tensor]:
        """
        Compute quantization min to be used for forward pass.
        NOTE: self.min may not be equal to self.get_min().
              self.get_min() returns slightly recalibrated version of self.min.
        :param dtype: dtype of the computed min. Use of self.min.dtype by default.
        :return: Quantization min
        """
        if not self.is_initialized():
            return None
        return self.get_scale(dtype) * (self.get_offset(dtype) + self.qmin)
    def get_max(self, dtype=None) -> Optional[torch.Tensor]:
        """
        Compute quantization max to be used for forward pass.
        NOTE: self.max may not be equal to self.get_max()
              self.get_max() returns slightly recalibrated version of self.max.
        :param dtype: dtype of the computed max. Use of self.min.dtype by default.
        :return: Quantization max
        """
        if not self.is_initialized():
            return None
        return self.get_scale(dtype) * (self.get_offset(dtype) + self.qmax)
    def get_scale(self, dtype=None) -> Optional[torch.Tensor]:
        """
        Compute quantization scale to be used for forward pass.
        Return None if the quantizer is not initialized yet.
        Args:
            dtype (torch.dtype): dtype of the computed scale
        Returns:
            Quantization scale
        """
        if not self.is_initialized():
            return None
        dtype = dtype or torch.float32
        if self._is_scale_offset_quantizer():
            scale = self.scale
        else:
            num_steps = self.qmax - self.qmin
            scale = (self.max.to(dtype) - self.min.to(dtype)) / num_steps
        return scale.to(dtype)
    def get_offset(self, dtype=None) -> Optional[torch.Tensor]:
        """
        Compute quantization offset to be used for forward pass.
        Return None if the quantizer is not initialized yet.
        Args:
            dtype (torch.dtype): dtype of the computed offset
        Returns:
            Quantization offset
        """
        if not self.is_initialized():
            return None
        dtype = dtype or torch.float32
        device = next(p.device for p in self.parameters())
        if self.symmetric:
            offset = _get_symmetric_offset(
                self.qmin, self.qmax, self.shape, dtype, device
            )
        elif self._is_scale_offset_quantizer():
            offset = ste_round(self.offset)
        else:
            offset = ste_round(self.min.to(dtype) / self.get_scale(dtype)) - self.qmin
        return offset.to(dtype)
    @torch.no_grad()
    def set_range(self, min: torch.Tensor, max: torch.Tensor):
        """
        Set quantization parameters to the given min-max range
        """
        if self._is_min_max_quantizer():
            with SafeGatheredParameters(
                self.parameters(recurse=False), modifier_rank=0
            ):
                self.min.copy_(min)
                self.max.copy_(max)
        else:
            # Compute scale/offset with float32 for numerical stability
            scale, offset = _get_scale_offset(
                min.to(torch.float32),
                max.to(torch.float32),
                qmin=self.qmin,
                qmax=self.qmax,
                symmetric=self.symmetric,
            )
            with SafeGatheredParameters(
                self.parameters(recurse=False), modifier_rank=0
            ):
                self.scale.copy_(scale)
                if not self.symmetric:
                    self.offset.copy_(offset)
    def get_encodings(self) -> Optional[AffineEncoding]:
        """
        Return the quantizer's encodings as an AffineEncoding object
        """
        if self.is_initialized():
            return AffineEncoding(
                self.get_scale(dtype=torch.float32),
                self.get_offset(dtype=torch.float32),
                self.qmin,
                self.qmax,
                self._symmetric,
                self.block_size,
                self.zero_point_shift,
            )
        return None
    @classmethod
    def from_encodings(cls, encodings: AffineEncoding) -> "AffineQuantizerBase":
        if not isinstance(encodings, AffineEncoding):
            raise TypeError(f"Expected {AffineEncoding}; got {type(encodings)}")
        qtzr = cls(
            shape=encodings.scale.shape,
            qmin=encodings.qmin,
            qmax=encodings.qmax,
            symmetric=encodings.symmetry,
            block_size=encodings.block_size,
        )
        qtzr.set_range(encodings.min, encodings.max)
        return qtzr
    @torch.no_grad()
    def get_legacy_encodings(self) -> Optional[List[Dict]]:
        """
        Returns a list of encodings, each represented as a List of Dicts
        """
        # pylint: disable=redefined-builtin, protected-access
        if not self.is_initialized():
            return None
        return self.get_encodings()._to_legacy_format()
    @torch.no_grad()
    def set_legacy_encodings(self, encodings: List[Dict]):
        """
        Set encodings represented in the same format as the output of get_legacy_encodings as below:
        [
            {'min': float, 'max': float, 'scale': float, 'offset': float,
                     'bitwidth': int, 'dtype': str, 'is_symmetric': str},
            {'min': float, 'max': float, 'scale': float, 'offset': float,
                     'bitwidth': int, 'dtype': str, 'is_symmetric': str},
            ...
        ]
        """
        def str_to_bool(s: str):
            s = s.lower()
            if s == "false":
                return False
            if s == "true":
                return True
            raise ValueError
        bitwidth = encodings[0]["bitwidth"]
        symmetric = str_to_bool(encodings[0]["is_symmetric"])
        # We support two quantization modes: (unsigned) asymmetric and signed-symmetric
        self.qmin, self.qmax = _derive_qmin_qmax(bitwidth=bitwidth, signed=symmetric)
        self.symmetric = symmetric
        # Note: We can only accurately infer signed-ness in the symmetric case, but AIMET uses unsigned for asymmetric
        min_ = torch.tensor([e["min"] for e in encodings]).view(self.shape)
        max_ = torch.tensor([e["max"] for e in encodings]).view(self.shape)
        self.set_range(min_, max_)
    def extra_repr(self) -> str:
        extra_repr = f"shape={self.shape}"
        if self.block_size is not None:
            extra_repr += f", block_size={self.block_size}"
        extra_repr += (
            f", qmin={self.qmin}, qmax={self.qmax}, symmetric={self.symmetric}"
        )
        return extra_repr
    @property
    def symmetric(self) -> bool:
        """
        Indicates whether this quantizer uses symmetric quantization
        """
        if self._is_min_max_quantizer():
            return self._symmetric
        return self.offset is None
    @symmetric.setter
    def symmetric(self, symmetric: bool):
        """
        Set the quantizer symmetry
        :param symmetric: If True, use symmetric encodings. Else, use asymmetric encodings
        """
        if self._is_min_max_quantizer():
            self._symmetric = symmetric
            return
        if symmetric and not self.symmetric:
            self.offset = None
            return
        if not symmetric and self.symmetric:
            offset = _get_symmetric_offset(
                self.qmin, self.qmax, self.shape, self.scale.dtype, self.scale.device
            )
            self.offset = torch.nn.Parameter(
                offset, requires_grad=self.scale.requires_grad
            )
    @property
    @docstring(_GridMixin._get_bitwidth.__doc__)
    def bitwidth(self) -> int:  # pylint: disable=missing-function-docstring
        return self._get_bitwidth()
    @bitwidth.setter
    def bitwidth(self, bitwidth: int):
        self._set_bitwidth(bitwidth)
    @property
    @docstring(_GridMixin._get_signed.__doc__)
    def signed(self) -> bool:  # pylint: disable=missing-function-docstring
        return self._get_signed()
    @signed.setter
    def signed(self, signed: bool):
        self._set_signed(signed)
    @contextlib.contextmanager
    def compute_encodings(self):
        """
        Observe inputs and update quantization parameters based on the input statistics.
        During ``compute_encodings`` is enabled, the quantizer forward pass performs
        dynamic quantization using the batch statistics.
        """
        if not self._allow_overwrite:
            yield
            return
        original_forward = self.forward
        shape = self.shape
        try:
            dtype, device = next((p.dtype, p.device) for p in self.parameters())
        except StopIteration as e:
            raise RuntimeError from e
        @functools.wraps(original_forward)
        def forward_wrapper(input):
            input = input.as_subclass(torch.Tensor)
            expanded_input = torch_builtins.reshape_tensor_for_blocks(
                input, shape, self.block_size
            )
            batch_statistics = self.encoding_analyzer.update_stats(expanded_input)
            num_steps = self.qmax - self.qmin
            if self.zero_point_shift == 0.5:
                num_steps -= 1
            dynamic_min, dynamic_max = (
                self.encoding_analyzer.compute_encodings_from_stats(
                    batch_statistics, num_steps, self.symmetric
                )
            )
            if self.block_size is not None:
                dynamic_min = dynamic_min.view(shape)
                dynamic_max = dynamic_max.view(shape)
            dynamic_min = dynamic_min.to(dtype=dtype, device=device).expand(shape)
            dynamic_max = dynamic_max.to(dtype=dtype, device=device).expand(shape)
            if self._is_min_max_quantizer():
                with (
                    patch_attr(self, "min", dynamic_min),
                    patch_attr(self, "max", dynamic_max),
                ):
                    ret = original_forward(input)
            else:
                # Compute scale/offset with float32 for numerical stability
                dynamic_scale, dynamic_offset = _get_scale_offset(
                    dynamic_min.to(torch.float32),
                    dynamic_max.to(torch.float32),
                    qmin=self.qmin,
                    qmax=self.qmax,
                    symmetric=self.symmetric,
                )
                with (
                    patch_attr(self, "scale", dynamic_scale),
                    patch_attr(self, "offset", dynamic_offset),
                ):
                    ret = original_forward(input)
            return ret
        self.encoding_analyzer.reset_stats()
        try:
            with patch_attr(self, "forward", forward_wrapper):
                yield
        except:  # pylint: disable=try-except-raise
            raise
        try:
            num_steps = self.qmax - self.qmin
            if self.zero_point_shift == 0.5:
                num_steps -= 1
            enc_min, enc_max = self.encoding_analyzer.compute_encodings(
                num_steps, self.symmetric
            )
            if self.block_size is not None:
                enc_min = enc_min.view(shape)
                enc_max = enc_max.view(shape)
            _flag_extreme_min_max(enc_min, enc_max)
        except StatisticsNotFoundError:
            return
        if enc_min is None or enc_max is None:
            return
        self.set_range(enc_min, enc_max)
def _get_symmetric_offset(qmin, qmax, shape, dtype, device):
    return torch.full(
        shape,
        fill_value=-round((qmin + qmax) / 2),
        requires_grad=False,
        dtype=dtype,
        device=device,
    )
def _get_min_max(
    scale: torch.Tensor, offset: Optional[torch.Tensor], qmin: int, qmax: int
) -> Tuple[torch.Tensor, torch.Tensor]:
    if offset is None:
        offset = _get_symmetric_offset(
            qmin, qmax, scale.shape, torch.int32, scale.device
        )
    if not isinstance(scale, torch.Tensor):
        scale = torch.tensor(scale, dtype=torch.float32)
    if not isinstance(offset, torch.Tensor):
        offset = torch.tensor(offset, dtype=torch.int32)
    out_dtype = scale.dtype
    scale = scale.to(torch.float32)
    offset = offset.to(torch.int32)
    min = scale * (offset + qmin)
    max = scale * (offset + qmax)
    return min.to(out_dtype), max.to(out_dtype)
def _get_scale_offset(
    min: torch.Tensor, max: torch.Tensor, qmin: int, qmax: int, symmetric: bool
) -> Tuple[torch.Tensor, torch.Tensor]:
    num_steps = qmax - qmin
    if not isinstance(min, torch.Tensor):
        min = torch.tensor(min, dtype=torch.float32)
    if not isinstance(max, torch.Tensor):
        max = torch.tensor(max, dtype=torch.float32)
    out_dtype = min.dtype
    min = min.to(torch.float32)
    max = max.to(torch.float32)
    scale = (max - min).div_(num_steps)
    if symmetric:
        offset = torch.full_like(
            min, fill_value=-round((qmin + qmax) / 2), requires_grad=False
        )
    else:
        offset = ste_round(min / scale) - qmin
    return scale.to(out_dtype), offset.to(out_dtype)
@runtime_checkable
class MinMaxQuantizer(Protocol):
    """
    Affine quantizer protocol parametrized with min and max
    """
    min: torch.nn.Parameter
    max: torch.nn.Parameter
    shape: Tuple[int, ...]
    qmin: int
    qmax: int
    symmetric: bool
@runtime_checkable
class ScaleOffsetQuantizer(Protocol):
    """
    Affine quantizer protocol parametrized with scale and offset
    """
    scale: torch.nn.Parameter
    offset: Optional[torch.nn.Parameter]
    shape: Tuple[int, ...]
    qmin: int
    qmax: int
    symmetric: bool
[docs]
class Quantize(AffineQuantizerBase):
    r"""Applies quantization to the input.
    Precisely,
    .. math::
        out = clamp\left(\left\lceil\frac{input}{scale}\right\rfloor - offset, qmin, qmax\right)
    where :math:`scale` and :math:`offset` are derived from learnable parameters
    :math:`\theta_{min}` and :math:`\theta_{max}`.
    If block size :math:`B = \begin{pmatrix} B_0  & B_1  & \cdots & B_{D-1} \end{pmatrix}` is specified,
    this equation will be further generalized as
    .. math::
        out_{j_0 \cdots j_{D-1}} & = clamp\left(
            \left\lceil\frac{input_{j_0 \cdots j_{D-1}}}{scale_{i_0 \cdots i_{D-1}}}\right\rfloor
            - offset_{i_0 \cdots i_{D-1}}, qmin, qmax\right)\\
        \text{where} \quad \forall_{0 \leq d < D} \quad i_d = \left\lfloor \frac{j_d}{B_d} \right\rfloor
    Args:
        shape (tuple): Shape of the quantization parameters
        bitwidth (int): Quantization bitwidth
        symmetric (bool): If True, performs symmetric quantization;
                          otherwise, performs asymmetric quantization
        encoding_analyzer (EncodingAnalyzer, optional): Encoding analyzer for calibrating quantization encodings
                                                        (default: absolute min-max encoding analyzer)
        block_size (Tuple[int, ...], optional): Block size
    :ivar Tensor min: :math:`\theta_{min}` from which scale and offset will be derived.
    :ivar Tensor max: :math:`\theta_{max}` from which scale and offset will be derived.
    .. note::
        :class:`Quantize` cannot run :meth:`forward` until :attr:`min` and :attr:`max` are properly initialized,
        which can be done based on input statistics using :meth:`compute_encodings` or
        by manually assigning a new value to :attr:`min` and :attr:`max`.
        See the examples below.
    Examples:
        >>> import aimet_torch.v2.quantization as Q
        >>> input = torch.randn(5, 10)
        >>> q = Q.affine.Quantize(shape=(5, 1), bitwidth=8, symmetric=False, block_size=(1, 5))
        >>> q.is_initialized()
        False
        >>> with q.compute_encodings():
        ...     _ = q(input)
        ...
        >>> q.is_initialized()
        True
        >>> q(input)
        QuantizedTensor([[129.,  64., 255., 122.,   0., 192., 106.,  94., 255.,   0.],
                         [  0., 145., 181., 255., 144., 255., 194.,   0.,  74.,  86.],
                         [122.,   0., 255., 150.,  33., 103., 103.,   0.,  37., 255.],
                         [255., 111., 237., 218.,   0.,  49., 155., 255.,   0., 179.],
                         [  0.,  66., 255.,  89., 110.,  17.,  36.,  83., 255.,   0.]],
                        grad_fn=<AliasBackward0>)
        >>> import aimet_torch.v2.quantization as Q
        >>> input = torch.randn(5, 10)
        >>> q = Q.affine.Quantize(shape=(5, 1), bitwidth=8, symmetric=False, block_size=(1, 5))
        >>> q.is_initialized()
        False
        >>> q.min = torch.nn.Parameter(-torch.ones_like(q.min))
        >>> q.max = torch.nn.Parameter(torch.ones_like(q.max))
        >>> q.is_initialized()
        True
        >>> q(input)
        QuantizedTensor([[187., 186., 131.,   0., 203.,  64.,  80.,   0., 143., 152.],
                         [ 16.,   0., 255.,   0.,   0., 150.,   0., 255.,  32., 255.],
                         [255., 226.,   0., 255.,  55., 172.,   0., 255., 145., 255.],
                         [207., 146., 216., 238.,   0.,   0., 141., 178., 255., 188.],
                         [ 63.,  59.,  19., 162.,  30., 255., 109., 255.,   0., 255.]],
                        grad_fn=<AliasBackward0>)
    """
    # NOTE: Deepspeed has a bug where it will inadvertently patch __init__ method permanently
    #       unless each leaf class explicitly defines its own __init__ separately.
    #       As a temporary workaround, we define __init__ to avoid triggering this bug.
    # pylint: disable=useless-super-delegation
    def __init__(self, shape, *args, **kwargs):
        super().__init__(shape, *args, **kwargs)
        if self.zero_point_shift != 0.0:
            raise RuntimeError("Nonzero quant shift not supported for Quantize")
[docs]
    def forward(self, input: torch.Tensor) -> QuantizedTensor:
        """Quantizes the input tensor
        Args:
            input (torch.Tensor): Input to quantize
        Returns:
            Quantized output
        """
        if not self.is_initialized():
            raise RuntimeError(
                "Failed to run Quantize since quantization parameters are not initialized."
                " Please initialize the quantization parameters using `compute_encodings()`."
            )
        encoding = self.get_encodings()
        # Subclasses of torch.Tensor with custom __torch_function__ (in our case, QuantizedTensorBase)
        # is known to introduce substantial CPU overhead.
        # Cast types of the inputs to plain torch.Tensor for faster execution.
        input = input.as_subclass(torch.Tensor)
        output = quantize(
            input,
            encoding.scale,
            encoding.offset,
            encoding.qmin,
            encoding.qmax,
            block_size=self.block_size,
        )
        output = output.as_subclass(QuantizedTensor)
        output.encoding = encoding
        return output 
 
[docs]
class QuantizeDequantize(AffineQuantizerBase):
    r"""Applies fake-quantization by quantizing and dequantizing the input.
    Precisely,
    .. math::
        out = (\overline{input} + offset) * scale
    where
    .. math::
        \overline{input} = clamp\left(\left\lceil\frac{input}{scale}\right\rfloor - offset, qmin, qmax\right)
    and :math:`scale` and :math:`offset` are derived from learnable parameters
    :math:`\theta_{min}` and :math:`\theta_{max}`.
    If block size :math:`B = \begin{pmatrix} B_0  & B_1  & \cdots & B_{D-1} \end{pmatrix}` is specified,
    this equation will be further generalized as
    .. math::
        out_{j_0 \cdots j_{D-1}} &= (\overline{input}_{j_0 \cdots j_{D-1}} + offset_{i_0 \cdots i_{D-1}}) * scale_{i_0 \cdots i_{D-1}}\\
        \overline{input}_{j_0 \cdots j_{D-1}} &= clamp\left(
            \left\lceil\frac{input_{j_0 \cdots j_{D-1}}}{scale_{i_0 \cdots i_{D-1}}}\right\rfloor
            - offset_{i_0 \cdots i_{D-1}}, qmin, qmax\right)\\
        \text{where} \quad \forall_{0 \leq d < D} \quad i_d = \left\lfloor \frac{j_d}{B_d} \right\rfloor
    Args:
        shape (tuple): Shape of the quantization parameters
        bitwidth (int): Quantization bitwidth
        symmetric (bool): If True, performs symmetric quantization;
                          otherwise, performs asymmetric quantization
        encoding_analyzer (EncodingAnalyzer, optional): Encoding analyzer for calibrating quantization encodings
                                                        (default: absolute min-max encoding analyzer)
        block_size (Tuple[int, ...], optional): Block size
    :ivar Tensor min: :math:`\theta_{min}` from which scale and offset will be derived.
    :ivar Tensor max: :math:`\theta_{max}` from which scale and offset will be derived.
    .. note::
        :class:`QuantizeDequantize` cannot run :meth:`forward` until :attr:`min` and :attr:`max` are properly initialized,
        which can be done based on input statistics using :meth:`compute_encodings` or
        by manually assigning a new value to :attr:`min` and :attr:`max`.
        See the examples below.
    Examples:
        >>> import aimet_torch.v2.quantization as Q
        >>> input = torch.randn(5, 10)
        >>> qdq = Q.affine.QuantizeDequantize(shape=(5, 2), bitwidth=8, symmetric=False, block_size=(1, 5))
        >>> qdq.is_initialized()
        False
        >>> with qdq.compute_encodings():
        ...     _ = qdq(input)
        ...
        >>> qdq.is_initialized()
        True
        >>> qdq(input)
        DequantizedTensor([[-0.2771,  0.3038,  1.0819,  0.9700,  0.9487, -0.1307,
                            -1.7894, -0.1709, -0.2212,  0.7741],
                           [-1.0295, -1.2265, -1.0295,  1.0564,  0.6177, -1.0386,
                            -0.0176, -2.6054,  1.8836, -0.1232],
                           [-0.8229,  0.5540,  0.3992, -0.2363,  1.2546, -1.0036,
                             0.2355,  0.1741,  1.6079,  0.6247],
                           [-1.0115,  1.2458,  0.9157, -1.4694, -0.0639, -0.2568,
                             0.0680,  1.6695,  0.7932, -0.1889],
                           [ 0.0158,  0.5695,  0.5220,  0.1977, -1.4475, -0.0424,
                            -1.1128, -0.8796, -0.1060,  1.5897]],
                          grad_fn=<AliasBackward0>)
        >>> import aimet_torch.v2.quantization as Q
        >>> input = torch.randn(5, 10)
        >>> qdq = Q.affine.QuantizeDequantize(shape=(5, 2), bitwidth=8, symmetric=False, block_size=(1, 5))
        >>> qdq.is_initialized()
        False
        >>> qdq.min = torch.nn.Parameter(-torch.ones_like(qdq.min))
        >>> qdq.max = torch.nn.Parameter(torch.ones_like(qdq.max))
        >>> qdq.is_initialized()
        True
        >>> qdq(input)
        DequantizedTensor([[-0.6196, -0.9961,  0.0549, -0.6431,  1.0039, -0.8706,
                             1.0039,  0.4706, -0.2353,  0.8078],
                           [ 0.3451, -0.1176, -0.9961, -0.4549, -0.0549, -0.0471,
                            -0.5255, -0.2353,  1.0039, -0.9961],
                           [-0.4157,  0.0784,  0.5333,  0.1647, -0.9961, -0.9961,
                            -0.2118, -0.2196,  0.9176,  0.9490],
                           [ 1.0039, -0.7765,  0.4784, -0.8706,  1.0039,  0.6039,
                            -0.4157, -0.2118, -0.9961,  0.3137],
                           [ 1.0039,  0.3216, -0.2353, -0.7765, -0.9961,  0.8000,
                             1.0039,  0.4157,  0.4392,  0.4863]],
                          grad_fn=<AliasBackward0>)
    """
    # NOTE: Deepspeed has a bug where it will inadvertently patch __init__ method permanently
    #       unless each leaf class explicitly defines its own __init__ separately.
    #       As a temporary workaround, we define __init__ to avoid triggering this bug.
    # pylint: disable=useless-super-delegation
    def __init__(self, shape, *args, **kwargs):
        super().__init__(shape, *args, **kwargs)
[docs]
    def forward(self, input: torch.Tensor) -> DequantizedTensor:
        """Quantizes and dequantizes the input tensor
        Args:
            input (torch.Tensor): Input to quantize and dequantize
        Returns:
            Quantize-dequantized output
        """
        if not self.is_initialized():
            raise RuntimeError(
                "Failed to run QuantizeDequantize since quantization parameters are not initialized."
                " Please initialize the quantization parameters using `compute_encodings()`."
            )
        encoding = self.get_encodings()
        # Subclasses of torch.Tensor with custom __torch_function__ (in our case, QuantizedTensorBase)
        # is known to introduce substantial CPU overhead.
        # Cast types of the inputs to plain torch.Tensor for faster execution.
        input = input.as_subclass(torch.Tensor)
        output = quantize_dequantize(
            input,
            encoding.scale,
            encoding.offset,
            encoding.qmin,
            encoding.qmax,
            block_size=self.block_size,
            zero_point_shift=self.zero_point_shift,
        )
        output = output.as_subclass(DequantizedTensor)
        output.encoding = encoding
        return output 
 
class Dequantize(AffineQuantizerBase):  # pylint: disable=missing-class-docstring
    def forward(self, input):
        if not self.is_initialized():
            raise RuntimeError(
                "Failed to run Dequantize since quantization parameters are not initialized."
                " Please initialize the quantization parameters using `compute_encodings()`."
            )
        if self.zero_point_shift != 0.0:
            raise RuntimeError("Nonzero quant shift not supported for Dequantize")
        encoding = self.get_encodings()
        # Subclasses of torch.Tensor with custom __torch_function__ (in our case, QuantizedTensorBase)
        # is known to introduce substantial CPU overhead.
        # Cast types of the inputs to plain torch.Tensor for faster execution.
        input = input.as_subclass(torch.Tensor)
        output = dequantize(
            input, encoding.scale, encoding.offset, block_size=self.block_size
        )
        output = output.as_subclass(DequantizedTensor)
        output.encoding = encoding
        return output
class GroupedBlockQuantizeDequantize(QuantizeDequantize):  # pylint: disable=too-many-ancestors
    """Class for performing Grouped Block Quantize Dequantize"""
    def __init__(
        self,
        shape,
        bitwidth: int,
        symmetric: bool,
        decompressed_bw: int,
        encoding_analyzer: EncodingAnalyzer = None,
        block_size: Optional[Tuple[int, ...]] = None,
        block_grouping: Optional[Tuple[int, ...]] = None,
    ):
        """
        Grouped Block Quantize Dequantize constructor.
        :param shape: Shape of the quantization parameters
        :type shape: tuple
        :param bitwidth: Quantization bitwidth
        :type bitwidth: int
        :param symmetric: If True, performs symmetric quantization;
                          otherwise, performs asymmetric quantization
        :type symmetric: bool
        :param decompressed_bw: Bitwidth used for decompression
        :type decompressed_bw: int
        :param encoding_analyzer: Encoding analyzer for calibrating quantization encodings
                                  (default: absolute min-max encoding analyzer)
        :type encoding_analyzer: EncodingAnalyzer, optional
        :param block_size: Block size per dimension.
        :type block_size: Tuple
        :param block_grouping: Block grouping per dimension. If provided, every set of block_group scales will be
                               grouped together, and the maximum scale for all blocks in the group will be used to find
                               the scale in the decompressed_grid to be shared by all blocks in the group.
                               If no block_grouping is provided, default behavior uses a block group of 1 for all dims,
                               equivalent to Blockwise Quantization.
                               A value of -1 for a block group for a dimension is equivalent to grouping all blocks in
                               the dimension in one group. This is also equivalent to a block group value equal to the
                               number of blocks for that dimension.
        :type block_grouping: Tuple
        """
        super().__init__(shape, bitwidth, symmetric, encoding_analyzer, block_size)
        self.decompressed_bw = decompressed_bw
        self.block_grouping = block_grouping
        if self.block_grouping is None:
            # Default to BQ behavior with 1 for all block grouping dims if not provided
            self.block_grouping = tuple(1 for _ in enumerate(self.shape))
        if block_grouping is not None:
            if len(block_grouping) != len(shape):
                raise RuntimeError(
                    f"Length of block grouping {block_grouping} must equal length of shape {shape}."
                )
            for idx, block_group in enumerate(block_grouping):
                if block_group != -1 and shape[idx] % block_group != 0:
                    raise RuntimeError(
                        f"Quantizer shape dimensions must divide evenly with corresponding block "
                        f"grouping values for shapes {shape} and block grouping {block_grouping}."
                    )
        if self.decompressed_bw < self.bitwidth:
            raise RuntimeError(
                f"Decompressed bitwidth {decompressed_bw} cannot be smaller than self.bitwidth "
                f"{bitwidth}"
            )
        if not symmetric:
            raise RuntimeError(
                "GroupedBlockQuantizeDequantize only supports symmetric quantization."
            )
    def get_scale(self, dtype=None) -> Optional[torch.Tensor]:
        r"""
        Compute quantization scale to be used for forward pass.
        Overrides QuantizeDequantize self.get_scale() to apply the grouped block algorithm for calculating modified
        scales.
        :param dtype: dtype of the computed scale. Use of self.min.dtype by default.
        :return: Updated scale
        """
        lpbq_scale, _ = self._get_scale(dtype)
        return lpbq_scale
    def get_per_channel_scale(self, dtype=None) -> Optional[torch.Tensor]:
        r"""
        Returns per-channel scale such that
        :math:`scale = per_chanel_scale * per_block_int_scale`
        """
        raw_scale = super().get_scale(dtype)
        if raw_scale is None:
            return None
        return self._get_per_channel_scale(raw_scale)
    def _get_scale(
        self, dtype=None
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
        raw_scale = super().get_scale(dtype)
        if raw_scale is None:
            return None, None
        per_channel_scale = self._get_per_channel_scale(raw_scale)
        lpbq_scale = quantize_dequantize(
            tensor=raw_scale,
            scale=per_channel_scale,
            offset=torch.zeros_like(per_channel_scale),
            qmin=1,
            qmax=2 ** (self.decompressed_bw - self.bitwidth),
            block_size=self.block_grouping,
        )
        return lpbq_scale, per_channel_scale
    def _get_per_channel_scale(self, raw_scale: torch.Tensor) -> torch.Tensor:
        per_channel_scale_shape = [
            s_dim // group_size if group_size != -1 else 1
            for s_dim, group_size in zip(raw_scale.shape, self.block_grouping)
        ]
        reshaped_scale = torch_builtins.reshape_tensor_for_blocks(
            raw_scale, per_channel_scale_shape, self.block_grouping
        )
        max_scale = torch.amax(
            reshaped_scale, dim=tuple(range(1, reshaped_scale.dim(), 2))
        )
        per_channel_scale = max_scale / 2 ** (self.decompressed_bw - self.bitwidth)
        return per_channel_scale
    def get_encodings(self) -> Optional[GroupedBlockEncoding]:
        """
        Return the quantizer's encodings as an EncodingBase object
        """
        if self.is_initialized():
            lpbq_scale, per_channel_scale = self._get_scale(dtype=torch.float32)
            return GroupedBlockEncoding(
                scale=lpbq_scale,
                offset=self.get_offset(dtype=torch.float32),
                bitwidth=self.bitwidth,
                signed=self.signed,
                symmetry=self.symmetric,
                block_size=self.block_size,
                block_grouping=self.block_grouping,
                decompressed_bw=self.decompressed_bw,
                per_channel_scale=per_channel_scale,
            )
        return None
    @classmethod
    def from_encodings(
        cls, encodings: GroupedBlockEncoding
    ) -> "GroupedBlockQuantizeDequantize":
        if not isinstance(encodings, GroupedBlockEncoding):
            raise TypeError(f"Expected {GroupedBlockEncoding}; got {type(encodings)}")
        qtzr = cls(
            shape=encodings.scale.shape,
            bitwidth=encodings.bitwidth,
            symmetric=encodings.symmetry,
            decompressed_bw=encodings.decompressed_bw,
            block_size=encodings.block_size,
            block_grouping=encodings.block_grouping,
        )
        qtzr.set_range(encodings.min, encodings.max)
        return qtzr