aimet_torch.peft

This document provides steps for integrating LoRA adapters with AIMET Quantization flow. LoRA adapters are used to enhance the efficiency of fine-tuning large models with reduced memory usage. We will use PEFT library from HuggingFace to instantiate our model and add adapters to it.

By integrating adapters with AIMET quantization, we can perform similar functionalities as present in PEFT, for example, changing adapter weights, enabling and disabling adapters. Along with this, we can tweak the quantization parameters for the adapters alone to get good quantization accuracy.

User flow

The user can use the following flow to quantize a model with LoRA adapters.

Step 1: Create a PEFT model with one adapter. Use PEFT APIs from HuggingFace to create a PEFT model

>>> from peft import LoraConfig, get_peft_model
>>> lora_config = LoraConfig(
>>>    lora_alpha=16,
>>>    lora_dropout=0.1,
>>>    r=4,
>>>    bias="none",
>>>    target_modules=["linear"])
>>> model = get_peft_model(model, lora_config)

Step 2: Replace lora layers with AIMET lora layers. This API helps AIMET quantize the lora layers

>>> from aimet_torch.peft import replace_lora_layers_with_quantizable_layers
>>> replace_lora_layers_with_quantizable_layers(model)

Step 3: Track meta data for lora layers such as adapter name, lora layer names & alpha param

>>> from aimet_torch.peft import track_lora_meta_data
>>> meta_data = track_lora_meta_data(model, tmp_dir, 'meta_data')
>>> ## If linear lora layers were replaced with ConvInplaceLinear then
>>> meta_data = track_lora_meta_data(model, tmp_dir, 'meta_data', ConvInplaceLinear)

Step 4: Create Quantization utilities

>>> from aimet_torch.peft import PeftQuantUtils
>>> peft_utils = PeftQuantUtils(meta_data)
>>> ## If we are using a prepared model, then load name to module dict that gets saved as a json file
>>> peft_utils = PeftQuantUtils(meta_data, name_to_module_dict)

Next step will be to Prepare the model and create a QuantSim object (steps are not shown below, please refer to model preparer and quantsim docs for reference) Once Sim is created, we can use peft_utils to modify quantization attributes for lora layers in sim

Step 5: Disable lora adapters. To compute base model encodings without the effect of adapters we need to disable lora adapters.

>>> peft_utils.disable_lora_adapters(sim)

Step 6: Compute Encodings for sim (Not shown below, refer to quantsim docs) & freeze base model encodings for params. (The step for computing the encoding for a model is not shows here). Since the base model weights are common across different adapters, we don’t need to recompute the encodings for them. Therefore, to speed up computation we freeze the base model params

>>> peft_utils.freeze_base_model_param_quantizers(sim)

Step 7: Export base model and encodings

>>> sim.export(tmpdir, 'model', dummy_input=dummy_inputs, export_model=True, filename_prefix_encodings='base_encodings')

Step 8: Load adapter weights for adapter 1

>>> peft_utils.enable_adapter_and_load_weights(sim, 'tmpdir/lora_weights_after_adaptation_for_adapter1.safetensor', use_safetensor=True)

Step 9: Configure lora adapter quantizers

>>> for name, lora_module in peft_utils.get_quantized_lora_layer(sim):
>>>     ### Change bitwidth
>>>     lora_module.param_quantizers['weight'].bitwidth = 16
>>>     ### Change per tensor to per channel
>>>     lora_module.param_quantizers['weight'] = aimet.quantization.affine.QuantizeDequantize(shape=(1, 1, 1, 1), bitwidth=16, symmetric=True).to(module.weight.device)
Step 10: Compute encodings for model & Export

Here we do not show steps for how to compute the encoding. Please refer to Quantization simulation documentation Note: while exporting the model directory should be the same for base_model export and consecutive exports

>>> sim.export(tmpdir, 'model', dummy_input=dummy_inputs, export_model=False, filename_prefix_encodings='adapter1')
>>> peft_utils.export_adapter_weights(sim, tmpdir, 'adapter1_weights')

Step 11: For another adapter with same configration (rank & target module) repeat steps 8-10

API

class aimet_torch.peft.AdapterMetaData[source]

Tracks meta data for lora layers. Tracks names of lora_a & b as well as alpha values .. attribute:: lora_A, lora_B, alpha

The following API can be used to replace PEFT lora layers definition with AIMET lora layers definition

peft.replace_lora_layers_with_quantizable_layers()

Utility to replace lora layers with Quantizable Lora layers

Parameters:

model (Module) – PEFT model

The following API can be used to track lora meta data. To be passed to peft utilities

peft.track_lora_meta_data(path, filename_prefix, replaced_module_type=None)

Utility to track and save meta data for adapters. The meta data has adapter names and corresponding lora layers & alphas

Parameters:
  • model (Module) – PEFT model

  • path (str) – path where to store model pth and encodings

  • filename_prefix (str) – Prefix to use for filenames

  • replaced_module_type (Optional[Type[Module]]) – If lora linear layer is replaced by another torch module, then replaced_module_type represents the type with which linear layer was replaced. Otherwise pass None

Return type:

Dict[str, AdapterMetaData]

class aimet_torch.peft.PeftQuantUtils(adapater_name_to_meta_data, name_to_module_dict=None)[source]

Utilities for quantizing peft model

Init for Peft utilities for quantization

Parameters:
  • adapater_name_to_meta_data (Dict[str, AdapterMetaData]) – Dict mapping adapter name to meta data. Output of track_meta_data

  • name_to_module_dict – PT Name to module prepared model name mapping

disable_lora_adapters(sim)[source]

Disables adapter (zero out weights for lora A & B) effect on base model by loading weights to model

Parameters:

sim (QuantizationSimModel) – QuantSim model

enable_adapter_and_load_weights(sim, adapter_weights_path, use_safetensor=True)[source]

Enables adapter effect on base model by loading weights to model

Parameters:
  • sim (QuantizationSimModel) – QuantSim model

  • adapter_weights_path – Path to adapter weights (adapter weights should be either bin file or safetensor)

  • use_safetensor (bool) – True if adapter weights path point to a safetensor file. False if points to bin file

export_adapter_weights(sim, path, filename_prefix)[source]

Exports adapter weights to safetensor format

Parameters:
  • sim (QuantizationSimModel) – QuantSim model

  • path (str) – path where to store model pth and encodings

  • filename_prefix (str) – Prefix to use for filenames of the model pth and encodings files

freeze_base_model(sim)[source]

Freeze entire base model

Parameters:

sim (QuantizationSimModel) – QuantSim model

freeze_base_model_activation_quantizers(sim)[source]

Freeze activation quantizers of base model

Parameters:

sim (QuantizationSimModel) – QuantSim model

freeze_base_model_param_quantizers(sim)[source]

Freeze parameter quantizers of base model

Parameters:

sim (QuantizationSimModel) – QuantSim model

get_fp_lora_layer(model)[source]

This Function can be used to get lora layers for a model

Parameters:

model – FP32 model

get_quantized_lora_layer(sim)[source]

This function can be used to generate lora quantized layers Use cases: 1) New quantizers can be created and assigned to lora quantized layer.

New quantizers may be required if changing - Changing dtype, per channel to per tensor and vice versa 2) Assign new values to symmetric, bitwidth

Parameters:

sim (QuantizationSimModel) – QuantSim model

quantize_lora_scale_with_fixed_range(sim, bitwidth, scale_min=0, scale_max=1e-05)[source]

Add input quantizer for scale(alpha/rank) and provide min max values to it

Parameters:
  • sim – QuantSim model

  • bitwidth – Bitwidth for input quantizer to Mul/ bitwidth for scale

  • scale_min – min value of lora alpha to be used

  • scale_max – max value of lora alpha to be used

set_bitwidth_for_lora_adapters(sim, output_bw, param_bw)[source]

Sets output and param bitwidth for all Lora adapters added to the model

Parameters:
  • sim (QuantizationSimModel) – QuantSim model

  • output_bw (int) – Output BW

  • param_bw (int) – Parameter BW