Source code for aimet_torch.defs

# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2018, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

""" Common type definitions that are used across AIMET """

from enum import Enum
from typing import List, Optional, Union

import torch.utils.data

from aimet_common.defs import GreedySelectionParameters, TarRankSelectionParameters, RankSelectScheme


[docs]class ModuleCompRatioPair: """ Pair of torch.nn.module and a compression-ratio :ivar module: Module of type torch.nn.module :ivar comp_ratio: Compression ratio. Compression ratio is the ratio of cost of compressed model to cost of the original model. """ def __init__(self, module: torch.nn.Module, comp_ratio: float): self.module = module self.comp_ratio = comp_ratio
class OpToIOTensors: """ Data class to store the input and output tensor names of an operation as a lists. """ def __init__(self, node_inputs: List[str], node_outputs: List[str]): """ :param node_inputs: name of inputs to the node :param node_outputs: name of output from the node """ self.inputs = node_inputs self.outputs = node_outputs
[docs]class SpatialSvdParameters: """ Configuration parameters for spatial svd compression """
[docs] class ManualModeParams: """ Configuration parameters for manual-mode spatial svd compression """ def __init__(self, list_of_module_comp_ratio_pairs: List[ModuleCompRatioPair]): """ :param list_of_module_comp_ratio_pairs: List of (module, comp-ratio) pairs """ self.list_of_module_comp_ratio_pairs = list_of_module_comp_ratio_pairs
[docs] class AutoModeParams: """ Configuration parameters for auto-mode compression """ def __init__(self, greedy_select_params: GreedySelectionParameters, modules_to_ignore: Optional[List[torch.nn.Module]] = None): """ :param greedy_select_params: Params for greedy comp-ratio selection algorithm :param modules_to_ignore: List of modules to ignore (None indicates nothing to ignore) """ self.greedy_params = greedy_select_params self.modules_to_ignore = [] if modules_to_ignore is None else modules_to_ignore
[docs] class Mode(Enum): """ Mode enumeration """ manual = 1 """ Manual mode """ auto = 2 """ Auto mode """
def __init__(self, mode: Mode, params: Union[ManualModeParams, AutoModeParams], multiplicity=1): """ :param mode: Either auto mode or manual mode :param params: Parameters for the mode selected :param multiplicity: The multiplicity to which ranks/input channels will get rounded. Default: 1 """ self.mode = mode self.mode_params = params self.multiplicity = multiplicity
[docs]class ChannelPruningParameters: """ Configuration parameters for channel pruning compression """
[docs] class ManualModeParams: """ Configuration parameters for manual-mode channel pruning compression """ def __init__(self, list_of_module_comp_ratio_pairs: List[ModuleCompRatioPair]): """ :param list_of_module_comp_ratio_pairs: List of (module, comp-ratio) pairs """ self.list_of_module_comp_ratio_pairs = list_of_module_comp_ratio_pairs
[docs] class AutoModeParams: """ Configuration parameters for auto-mode compression """ def __init__(self, greedy_select_params: GreedySelectionParameters, modules_to_ignore: Optional[List[torch.nn.Module]] = None): """ :param greedy_select_params: Params for greedy comp-ratio selection algorithm :param modules_to_ignore: List of modules to ignore (None indicates nothing to ignore) """ self.greedy_params = greedy_select_params self.modules_to_ignore = [] if modules_to_ignore is None else modules_to_ignore
[docs] class Mode(Enum): """ Mode enumeration """ manual = 1 """ Manual mode: User specifies comp-ratio per layer """ auto = 2 """ Auto mode: AIMET computes optimal comp-ratio per layer """
def __init__(self, data_loader: torch.utils.data.DataLoader, num_reconstruction_samples: int, allow_custom_downsample_ops: bool, mode: Mode, params: Union[ManualModeParams, AutoModeParams], multiplicity=1): self.data_loader = data_loader self.num_reconstruction_samples = num_reconstruction_samples self.allow_custom_downsample_ops = allow_custom_downsample_ops self.mode = mode self.mode_params = params self.multiplicity = multiplicity
[docs]class WeightSvdParameters: """ Configuration parameters for weight svd compression """
[docs] class ManualModeParams: """ Configuration parameters for manual-mode weight svd compression """ def __init__(self, list_of_module_comp_ratio_pairs: List[ModuleCompRatioPair]): """ :param list_of_module_comp_ratio_pairs: List of (module, comp-ratio) pairs """ self.list_of_module_comp_ratio_pairs = list_of_module_comp_ratio_pairs
[docs] class AutoModeParams: """ Configuration parameters for auto-mode compression """ def __init__(self, rank_select_scheme: RankSelectScheme, select_params: Union[GreedySelectionParameters, TarRankSelectionParameters], modules_to_ignore: Optional[List[torch.nn.Module]] = None): """ :param rank_select_scheme: supports two options greedy and tar :param select_params: Params for greedy/TAR comp-ratio selection algorithm :param modules_to_ignore: List of modules to ignore (None indicates nothing to ignore) """ self.rank_select_scheme = rank_select_scheme self.select_params = select_params self.modules_to_ignore = [] if modules_to_ignore is None else modules_to_ignore
[docs] class Mode(Enum): """ Mode enumeration """ manual = 1 """ Manual mode """ auto = 2 """ Auto mode """
def __init__(self, mode: Mode, params: Union[ManualModeParams, AutoModeParams], multiplicity=1): """ :param mode: Either auto mode or manual mode :param params: Parameters for the mode selected :param multiplicity: The multiplicity to which ranks/input channels will get rounded. Default: 1 """ self.mode = mode self.mode_params = params self.multiplicity = multiplicity
class PassThroughOp(torch.nn.Module): """ This is a pass-through op, used for purpose of making an op a no-op """ # pylint:disable=arguments-differ @staticmethod def forward(inputx): """ Forward pass for passthrough op """ return inputx