QuantizedTensorBase¶
- class aimet_torch.quantization.QuantizedTensorBase(*args, **kwargs)[source]¶
Abstract base class for quantized tensors. Represents a quantized or dequantized tensor as a subclass of
torch.Tensor
which also holds the quantization encodings. This object can be safely quantized or dequantized through thequantize()
anddequantize()
methods without changing the represented data values.Example
>>> from aimet_torch.v2 import quantization as Q >>> quantizer = Q.affine.Quantize(shape=(2, 1), bitwidth=8, symmetric=True) >>> x = torch.tensor([[-1.20, 4.1, -0.21, 2.3], ... [0.2, 5.6, -1.0, -.1]]) >>> with quantizer.compute_encodings(): ... x_q = quantizer(x) >>> torch.equal(x_q.encoding.scale, quantizer.get_scale()) True >>> x_q QuantizedTensor([[-37., 127., -7., 71.], [ 5., 127., -23., -2.]]) >>> x_q.quantized_repr() tensor([[-37, 127, -7, 71], [ 5, 127, -23, -2]], dtype=torch.int8) >>> x_q.dequantize() DequantizedTensor([[-1.1945, 4.1000, -0.2260, 2.2921], [ 0.2205, 5.6000, -1.0142, -0.0882]])
- clone(*, memory_format=torch.preserve_format)[source]¶
Returns a copy of self
- Parameters:
memory_format – Desired memory format of the returned tensor (default=torch.preserve_format)
- abstract dequantize()[source]¶
Dequantizes
self
with the associated encoding :rtype:DequantizedTensor
Note
This method must be an IDEMPOTENT function. The result of calling this method multiple times should be equal to calling it only once. In other words, calling this method multiple times should not result in duplicate dequantization.
- detach()[source]¶
Returns a new QuantizedTensorBase with data and encoding detached from the current graph
- Return type:
- new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False, **kwargs)[source]¶
Returns a Tensor of size
size
filled with uninitialized data. By default, the returned Tensor has the sametorch.dtype
andtorch.device
as this tensor.- Return type:
- Parameters:
size (int...) – a list, tuple, or
torch.Size
of integers defining the shape of the output tensor.- Keyword Arguments:
dtype (
torch.dtype
, optional) – the desired type of returned tensor. Default: if None, sametorch.dtype
as this tensor.device (
torch.device
, optional) – the desired device of returned tensor. Default: if None, sametorch.device
as this tensor.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
Example:
>>> tensor = torch.ones(()) >>> tensor.new_empty((2, 3)) tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], [ 3.0949e-41, 4.4842e-44, 0.0000e+00]])
- abstract quantize()[source]¶
Quantizes
self
with the associated encoding :rtype:QuantizedTensor
Note
This method must be an IDEMPOTENT function. The result of calling this method multiple times should be equal to calling it only once. In other words, calling this method multiple times should not result in duplicate quantization.
- abstract quantized_repr()[source]¶
Return the quantized representation of
self
as atorch.Tensor
with data typeself.encoding.dtype
:rtype:Tensor
Note
The result of this function may not be able to carry a gradient depending on the quantized data type. Thus, it may be necessary to call this only within an autograd function to allow for backpropagation.
Example
>>> from aimet_torch.v2 import quantization as Q >>> quantizer = Q.affine.Quantize(shape=(2, 1), bitwidth=8, symmetric=True) >>> x = torch.randn((2, 4), requires_grad=True) >>> with quantizer.compute_encodings(): ... x_q = quantizer(x) >>> x_q QuantizedTensor([[ 11., -57., -128., 38.], [ 28., -0., -128., -40.]], grad_fn=<AliasBackward0>) >>> x_q.quantized_repr() tensor([[ 11, -57, -128, 38], [ 28, 0, -128, -40]], dtype=torch.int8)