aimet_torch.v1.adaround

Note

This module is also available in the default aimet_torch namespace with the same top-level API.

Top level APIs

aimet_torch.v1.adaround.adaround_weight.Adaround.apply_adaround(model, dummy_input, params, path, filename_prefix, default_param_bw=4, param_bw_override_list=None, ignore_quant_ops_list=None, default_quant_scheme=QuantScheme.post_training_tf_enhanced, default_config_file=None)

Returns model with optimized weight rounding of every module (Conv and Linear) and also saves the corresponding quantization encodings to a separate JSON-formatted file that can then be imported by QuantSim for inference or QAT

Parameters:
  • model (Module) – Model to Adaround

  • dummy_input (Union[Tensor, Tuple]) – Dummy input to the model. Used to parse model graph. If the model has more than one input, pass a tuple. User is expected to place the tensors on the appropriate device.

  • params (AdaroundParameters) – Parameters for Adaround

  • path (str) – path where to store parameter encodings

  • filename_prefix (str) – Prefix to use for filename of the encodings file

  • default_param_bw (int) – Default bitwidth (4-31) to use for quantizing layer parameters

  • param_bw_override_list (Optional[List[Tuple[Module, int]]]) – List of Tuples. Each Tuple is a module and the corresponding parameter bitwidth to be used for that module.

  • ignore_quant_ops_list (Optional[List[Module]]) – Ops listed here are skipped during quantization needed for AdaRounding. Do not specify Conv and Linear modules in this list. Doing so, will affect accuracy.

  • default_quant_scheme (QuantScheme) – Quantization scheme. Supported options are using Quant Scheme Enum QuantScheme.post_training_tf or QuantScheme.post_training_tf_enhanced

  • default_config_file (Optional[str]) – Default configuration file for model quantizers

Return type:

Module

Returns:

Model with Adarounded weights and saves corresponding parameter encodings JSON file at provided path

Adaround parameters

class aimet_torch.v1.adaround.adaround_weight.AdaroundParameters(data_loader, num_batches, default_num_iterations=None, default_reg_param=0.01, default_beta_range=(20, 2), default_warm_start=0.2, forward_fn=None)[source]

Configuration parameters for Adaround

Parameters:
  • data_loader (DataLoader) – Data loader

  • num_batches (int) – Number of batches to be used for Adaround. A commonly recommended value for this parameter is the smaller value among (1) len(data_loader) and (2) ceil(2000/batch_size)

  • default_num_iterations (Optional[int]) – Number of iterations to adaround each layer. The default value is 10K for models with 8- or higher bit weights, and 15K for models with lower than 8 bit weights.

  • default_reg_param (float) – Regularization parameter, trading off between rounding loss vs reconstruction loss. Default 0.01

  • default_beta_range (Tuple) – Start and stop beta parameter for annealing of rounding loss (start_beta, end_beta). Default (20, 2)

  • default_warm_start (float) – warm up period, during which rounding loss has zero effect. Default 20% (0.2)

  • forward_fn (Optional[Callable[[Module, Any], Any]]) – Optional adapter function that performs forward pass given a model and inputs yielded from the data loader. The function expects model as first argument and inputs to model as second argument.