AIMET Visualization for Quantization for TensorFlow API
Top-level API for Visualization of Weight tensors
- aimet_tensorflow.plotting_utils.visualize_weight_ranges_single_layer(sess, layer, results_dir)[source]
Given a layer, visualizes weight ranges with scatter plots and line plots
- Parameters
sess – tf.compat.v1.Session
layer – layer with weights
results_dir – Directory to save the Bokeh plots
- Returns
Bokeh plot
- aimet_tensorflow.plotting_utils.visualize_relative_weight_ranges_single_layer(sess, layer, results_dir)[source]
Publishes a line plot showing weight ranges for each layer, summary statistics for relative weight ranges, and a histogram showing weight ranges of output channels
- Parameters
sess – tf.compat.v1.Session
layer – layer with weights
results_dir – Directory to save the Bokeh plots
- Returns
bokeh plot
Code Examples for Visualization of Weight tensors
Required imports
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
from aimet_tensorflow import plotting_utils
Visualizing weight ranges for layer
def visualizing_weight_ranges_for_single_layer():
# load a model
tf.keras.backend.clear_session()
_ = ResNet50(weights='imagenet', input_shape=(224, 224, 3))
sess = tf.compat.v1.keras.backend.get_session()
results_dir = 'artifacts'
with sess.as_default():
# Getting a layer for visualizaing its weight ranges
conv_op = sess.graph.get_operation_by_name('conv1_conv/Conv2D')
plotting_utils.visualize_weight_ranges_single_layer(sess=sess, layer=conv_op, results_dir=results_dir)
sess.close()
Visualizing Relative weight ranges for layer
def visualizing_relative_weight_ranges_for_single_layer():
# load a model
tf.keras.backend.clear_session()
_ = ResNet50(weights='imagenet', input_shape=(224, 224, 3))
sess = tf.compat.v1.keras.backend.get_session()
results_dir = 'artifacts'
with sess.as_default():
# Getting a layer for visualizaing its weight ranges
conv_op = sess.graph.get_operation_by_name('conv1_conv/Conv2D')
plotting_utils.visualize_relative_weight_ranges_single_layer(sess=sess, layer=conv_op,
results_dir=results_dir)
sess.close()