Source code for aimet_torch.auto_quant

# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

# pylint: disable=too-many-lines

"""Automatic Post-Training Quantization"""
import copy
import contextlib
from warnings import warn
from dataclasses import dataclass
import functools
import os
from typing import Any, Collection, Callable, Dict, List, Optional, Tuple, Union, Mapping
import torch
from torch.utils.data import DataLoader
import jinja2
from tqdm import tqdm

from aimet_torch import utils
from aimet_torch.adaround.adaround_weight import Adaround, AdaroundParameters
from aimet_torch.cross_layer_equalization import equalize_model
from aimet_torch.batch_norm_fold import fold_all_batch_norms
from aimet_torch.quantsim import QuantizationSimModel
from aimet_torch.utils import in_eval_mode
from aimet_torch.onnx_utils import OnnxExportApiArgs

from aimet_common.auto_quant import Diagnostics
from aimet_common.cache import Cache
from aimet_common.defs import QuantScheme
from aimet_common.utils import AimetLogger, Spinner
from aimet_common.quantsim import validate_quantsim_inputs


_logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.AutoQuant)

cache = Cache()


# The number of samples to be used for performance evaluation.
# NOTE: None means "all".
NUM_SAMPLES_FOR_PERFORMANCE_EVALUATION = None


[docs]class AutoQuant: """ .. warning:: :class:`auto_quant.AutoQuant <aimet_torch.auto_quant.AutoQuant>` is deprecated and will be replaced with :class:`auto_quant_v2.AutoQuant <aimet_torch.auto_quant_v2.AutoQuant>` in the later versions. Integrate and apply post-training quantization techniques. AutoQuant includes 1) batchnorm folding, 2) cross-layer equalization, and 3) Adaround. These techniques will be applied in a best-effort manner until the model meets the evaluation goal given as allowed_accuracy_drop. """ def __init__( # pylint: disable=too-many-arguments self, allowed_accuracy_drop: float, unlabeled_dataset_iterable: Union[DataLoader, Collection], eval_callback: Callable[[torch.nn.Module, Optional[int]], float], default_param_bw: int = 8, default_output_bw: int = 8, default_quant_scheme: QuantScheme = QuantScheme.post_training_tf_enhanced, default_rounding_mode: str = 'nearest', default_config_file: str = None, ) -> None: """ :param allowed_accuracy_drop: Maximum allowed accuracy drop. :param unlabeled_dataset_iterable: A collection (i.e. iterable with `__len__`) that iterates over an unlabeled dataset used for encoding computation. The values yielded by this iterable are expected to be able to be passed directly to the model. By default, this iterable will be also used for Adaround unless otherwise specified by `self.set_adaround_params`. :param eval_callback: A function that maps model and the number samples to the evaluation score. This callback is expected to return a scalar value representing the model performance evaluated against exactly `N` samples, where `N` is the number of samples passed as the second argument of this callback. NOTE: If `N` is None, the model is expected to be evaluated against the whole evaluation dataset. :param default_param_bw: Default bitwidth (4-31) to use for quantizing layer parameters. :param default_output_bw: Default bitwidth (4-31) to use for quantizing layer inputs andoutputs. :param default_quant_scheme: Quantization scheme. Supported values are QuantScheme.post_training_tf or QuantScheme.post_training_tf_enhanced. :param default_rounding_mode: Rounding mode. Supported options are 'nearest' or 'stochastic' :param default_config_file: Path to configuration file for model quantizers """ warn('Please note that auto_quant.AutoQuant is deprecated and will be removed ' 'in the next AIMET release. Please use auto_quant_v2.AutoQuant instead. ' 'The API is slightly changed - please refer to the API docs.', DeprecationWarning, stacklevel=2) if allowed_accuracy_drop < 0: raise ValueError( "`allowed_accuracy_drop` must be a positive value. Got {:.2f}" .format(allowed_accuracy_drop) ) validate_quantsim_inputs(default_quant_scheme, default_rounding_mode, default_output_bw, default_param_bw) @functools.wraps(eval_callback) def eval_callback_wrapper(model: torch.nn.Module, num_samples: Optional[int]) -> float: """ Wrapper to ensure that model is in eval mode before entering eval_callback. """ with in_eval_mode(model), torch.no_grad(): return eval_callback(model, num_samples) self.allowed_accuracy_drop = allowed_accuracy_drop self.eval_callback = eval_callback_wrapper self.default_param_bw = default_param_bw self.default_output_bw = default_output_bw self.default_quant_scheme = default_quant_scheme self.default_rounding_mode = default_rounding_mode self.default_config_file = default_config_file def forward_pass_callback(model, _: Any = None): device = utils.get_device(model) with in_eval_mode(model), torch.no_grad(): for input_data in tqdm(unlabeled_dataset_iterable): input_data = utils.change_tensor_device_placement(input_data, device) if isinstance(input_data, torch.Tensor): model(input_data) else: assert isinstance(input_data, (tuple, list)) model(*input_data) self.forward_pass_callback = forward_pass_callback self.adaround_params = AdaroundParameters(unlabeled_dataset_iterable, len(unlabeled_dataset_iterable)) self._export_kwargs = dict( onnx_export_args=OnnxExportApiArgs(), propagate_encodings=False ) def _evaluate_model_performance(self, model) -> float: """ Evaluate the model performance. """ return self.eval_callback(model, NUM_SAMPLES_FOR_PERFORMANCE_EVALUATION)
[docs] def set_adaround_params(self, adaround_params: AdaroundParameters) -> None: """ Set Adaround parameters. If this method is not called explicitly by the user, AutoQuant will use `unlabeled_dataset_iterable` (passed to `__init__`) for Adaround. :param adaround_params: Adaround parameters. """ self.adaround_params = adaround_params
[docs] def set_export_params(self, onnx_export_args: OnnxExportApiArgs = -1, propagate_encodings: bool = None) -> None: """ Set parameters for QuantizationSimModel.export. :param onnx_export_args: optional export argument with onnx specific overrides if not provide export via torchscript graph :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. """ # Here, we use -1 to indicate `onnx_export_args` wasn't specified # since onnx_export_args being None has its own meaning. if onnx_export_args != -1: self._export_kwargs.update(onnx_export_args=onnx_export_args) if propagate_encodings is not None: self._export_kwargs.update(propagate_encodings=propagate_encodings)
def _create_quantsim_and_encodings( # pylint: disable=too-many-arguments self, model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], quant_scheme: QuantScheme = None, rounding_mode: str = None, default_output_bw: int = None, default_param_bw: int = None, config_file: str = None, encoding_path: str = None, ) -> QuantizationSimModel: """ Create a QuantizationSimModel and compute encoding. If `encoding_path` is not None, it is prioritized over other arguments (`default_output_bw`, `defalt_param_bw`, ...). :param model: Model to quantize. :param dummy_input: Dummy input to the model. :param quant_scheme: Quantization scheme. Defaults to self.default_quant_scheme. :param rounding_mode: Rounding mode. Defaults to self.default_rounding_mode. :param default_output_bw: Default bitwidth (4-31) to use for quantizing layer inputs andoutputs. Defaults to self.default_output_bw. :param default_param_bw: Default bitwidth (4-31) to use for quantizing layer parameters. Defaults to self.default_param_bw. :param config_file: Path to configuration file for model quantizers. Defaults to self.default_config_file. :param encoding_path: Path to parameter encodings file. :return: Quantsim model. """ kwargs = dict( quant_scheme=(quant_scheme or self.default_quant_scheme), rounding_mode=(rounding_mode or self.default_rounding_mode), default_output_bw=(default_output_bw or self.default_output_bw), default_param_bw=(default_param_bw or self.default_param_bw), config_file=(config_file or self.default_config_file), ) sim = QuantizationSimModel(model, dummy_input, **kwargs) if encoding_path: sim.set_and_freeze_param_encodings(encoding_path) sim.compute_encodings(self.forward_pass_callback, None) return sim @cache.mark("batchnorm_folding") def _apply_batchnorm_folding( # pylint: disable=no-self-use self, model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], ) -> Tuple[torch.nn.Module, List[Tuple]]: """ Apply batchnorm folding. NOTE: Input model is not mutated. :param model: Model to apply batchnorm folding. :param dummy_input: Dummy input to the model. :return: Output model and folded pairs. """ model = copy.deepcopy(model) folded_pairs = fold_all_batch_norms(model, None, dummy_input) return model, folded_pairs @cache.mark("cle") def _apply_cross_layer_equalization( # pylint: disable=no-self-use self, model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], ) -> torch.nn.Module: """ Apply cross-layer equalization. NOTE: Input model is not mutated. :param model: Model to apply cross-layer-equalization. :param dummy_input: Dummy input to the model. :return: Output model. """ model = copy.deepcopy(model) if isinstance(dummy_input, torch.Tensor): input_shape = tuple(dummy_input.shape) else: input_shape = [tuple(x.shape) for x in dummy_input] equalize_model(model, input_shape) return model @cache.mark("adaround") def _apply_adaround( self, model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], results_dir: str, ) -> Tuple[torch.nn.Module, str]: """ Apply adaround. NOTE1: Input model is not mutated. NOTE2: Parameters `param_bw_override_list` and `ignore_quant_ops_list` are always set to None. :param model: Model to apply adaround. :param dummy_input: Dummy input to the model. :param results_dir: Directory to save the results of AdaRound. :return: Output model and the path to the parameter encoding file. """ # NOTE: We dont need to make a deepcopy of model here, since Adaround.apply_adaround # internally creates and returns a deepcopy of model. filename_prefix = "adaround" adaround_encoding_path = os.path.join(results_dir, "{}.encodings".format(filename_prefix)) model = Adaround.apply_adaround(model, dummy_input, self.adaround_params, path=results_dir, filename_prefix=filename_prefix, default_param_bw=self.default_param_bw, param_bw_override_list=None, ignore_quant_ops_list=None, default_quant_scheme=self.default_quant_scheme, default_config_file=self.default_config_file) return model, adaround_encoding_path
[docs] def apply( self, fp32_model: torch.nn.Module, dummy_input_on_cpu: Union[torch.Tensor, Tuple], dummy_input_on_gpu: Optional[Union[torch.Tensor, Tuple]] = None, results_dir: str = "/tmp", cache_id: str = None, ) -> Tuple[torch.nn.Module, float, str]: """ Apply post-training quantization techniques. :param fp32_model: Model to apply PTQ techniques. :param dummy_input_on_cpu: Dummy input to the model in CPU memory. :param dummy_input_on_gpu: Dummy input to the model in GPU memory. This parameter is required if and only if the fp32_model is on GPU. :param results_dir: Directory to save the results. :param cache_id: A string that composes a cache id in combination with results_dir. If specified, AutoQuant will load/save the PTQ results from/to the file system if previous PTQ results produced under the same results_dir and cache_id exist, :return: Tuple of (best model, eval score, encoding path front). :raises: - ValueError if the model is on GPU and dummy_input_on_gpu is not specified. """ result = self._apply_helper(self._auto_quant_main, fp32_model, dummy_input_on_cpu, dummy_input_on_gpu, results_dir, cache_id) return result["model"],\ result["accuracy"],\ result["encoding_path"]
def _apply_helper( self, auto_quant_main_fn: Callable, fp32_model: torch.nn.Module, dummy_input_on_cpu: Union[torch.Tensor, Tuple], dummy_input_on_gpu: Optional[Union[torch.Tensor, Tuple]] = None, results_dir: str = "/tmp", cache_id: str = None, ) -> Dict[str, Any]: """ Helper for self.apply(). :param auto_quant_main_fn: Function that implements the main logic of AutoQuant. :param fp32_model: Model to apply PTQ techniques. :param dummy_input_on_cpu: Dummy input to the model in CPU memory. :param dummy_input_on_gpu: Dummy input to the model in GPU memory. This parameter is required if and only if the fp32_model is on GPU. :param results_dir: Directory to save the results. :param cache_id: A string that composes a cache id in combination with results_dir. If specified, AutoQuant will load/save the PTQ results from/to the file system if previous PTQ results produced under the same results_dir and cache_id exist, :return: The best ptq result as a dictionary. :raises: - ValueError if the model is on GPU and dummy_input_on_gpu is not specified. """ results_dir = os.path.abspath(results_dir) os.makedirs(results_dir, exist_ok=True) if utils.get_device(fp32_model) == torch.device("cpu"): dummy_input = dummy_input_on_cpu else: if dummy_input_on_gpu is None: raise ValueError( "If model is placed on GPU, dummy_input_on_gpu must be also provided." ) dummy_input = dummy_input_on_gpu if cache_id is None: cache_dir = None else: cache_dir = os.path.join(results_dir, ".auto_quant_cache", cache_id) with in_eval_mode(fp32_model): with cache.enable(cache_dir): _logger.info("Starting AutoQuant") fp32_acc = self._evaluate_model_performance(fp32_model) target_acc = fp32_acc - self.allowed_accuracy_drop _logger.info("Target eval score: %f", target_acc) _logger.info("FP32 eval score (W32A32): %f", fp32_acc) eval_manager = _EvalManager( quantsim_factory=self._create_quantsim_and_encodings, eval_func=self._evaluate_model_performance, dummy_input=dummy_input, dummy_input_on_cpu=dummy_input_on_cpu, results_dir=results_dir, ) ret = auto_quant_main_fn(fp32_model, target_acc, dummy_input, eval_manager, results_dir) acc = ret["accuracy"] _logger.info("Best eval score: %f", acc) if acc < target_acc: _logger.info( "AutoQuant is unable to match the target accuracy. " "Consider Quantization Aware Training." ) eval_manager.export_diagnostics() return ret def _auto_quant_main( self, fp32_model: torch.nn.Module, target_acc: float, dummy_input: Union[torch.Tensor, Tuple], eval_manager: "_EvalManager", results_dir: str = "/tmp", ) -> Dict[str, Any]: """ Helper function of apply(). :param fp32_model: Model to apply PTQ techniques. :param target_acc: Target eval score. :param dummy_input: Dummy input to the model. The device of dumyy_input should be same as that of model. :param eval_manager: _Evalmanager object. :param results_dir: Directory to save the results. :return: The best ptq result as a dictionary. """ with eval_manager.analysis_session("Weight Quantization Sensitivity") as sess: acc = sess.eval(fp32_model, default_output_bw=32) sess.diagnostics.add( f"Weight-quantized eval score (W{self.default_param_bw}A32): {acc:f}" ) with eval_manager.analysis_session("Activation Quantization Sensitivity") as sess: acc = sess.eval(fp32_model, default_param_bw=32) sess.diagnostics.add( f"Activation-quantized eval score (W32A{self.default_output_bw}): {acc:f}" ) # Batchnorm Folding with eval_manager.ptq_session("Batchnorm Folding") as sess: model, folded_pairs = self._apply_batchnorm_folding(fp32_model, dummy_input) for conv, bn in folded_pairs: sess.diagnostics.add(f"{conv} was merged with {bn}.") sess.set_ptq_result(model=model, applied_techniques=["batchnorm_folding"], export_kwargs=self._export_kwargs) best_result = eval_manager.get_best_ptq_result() if best_result.accuracy >= target_acc: return best_result.as_dict() # Cross-Layer Equalization with eval_manager.ptq_session("Cross-Layer Equalization") as sess: model = self._apply_cross_layer_equalization(fp32_model, dummy_input) sess.set_ptq_result(model=model, applied_techniques=["cross_layer_equalization"], export_kwargs=self._export_kwargs) best_result = eval_manager.get_best_ptq_result() if best_result.accuracy >= target_acc: return best_result.as_dict() # AdaRound with eval_manager.ptq_session("AdaRound") as sess: model, encoding_path = self._apply_adaround(best_result.load_model(), dummy_input, results_dir) sess.set_ptq_result(model=model, encoding_path=encoding_path, applied_techniques=[*best_result.applied_techniques, "adaround"], export_kwargs=self._export_kwargs) return eval_manager.get_best_ptq_result().as_dict()
@dataclass class PtqResult: """ Evaluation results. :param tag: Identifier string of the evaluation result. :param model_path: Path to the serialized model. :param encoding_path: Path to the encoding file. :param accuracy: Accuracy of the model. """ model_path: str device: torch.device encoding_path: str accuracy: float applied_techniques: List[str] def load_model(self) -> torch.nn.Module: """ Load model. :return: Loaded model. """ return torch.load(self.model_path).to(self.device) def as_dict(self): """Convert to dictionary""" return dict(model=self.load_model(), accuracy=self.accuracy, encoding_path=self.encoding_path, applied_techniques=self.applied_techniques) class _EvalManager: """ Evaluation manager for AutoQuant. """ def __init__(self, quantsim_factory: Callable, eval_func: Callable[[torch.nn.Module], float], dummy_input: Union[torch.Tensor, Tuple], dummy_input_on_cpu: Union[torch.Tensor, Tuple], results_dir: str): """ :param quantsim_factory: A factory function that returns QuantizationSimModel. :param eval_func: Evaluation function. :param dummy_input: Dummy input to the model. Assumed to be located on the same device as the model. :param dummy_input_on_cpu: Dummy input to the model in CPU memory. :param results_dir: Base directory to save the temporary serialized model. """ self._quantsim_factory = quantsim_factory self._eval_func = eval_func self._dummy_input = dummy_input self._dummy_input_on_cpu = dummy_input_on_cpu self._results_dir = results_dir os.makedirs(self._results_dir, exist_ok=True) self._all_sessions: List[_EvalSession] = [] self._ptq_sessions: List[_PtqSession] = [] def get_best_ptq_result(self) -> PtqResult: """ Get the results with the highest evaluation score among the ptq results evaluated so far. :return: The best evaluation result so far. """ if not self._ptq_sessions: raise RuntimeError ptq_results = [sess.ptq_result for sess in self._ptq_sessions] return max(ptq_results, key=lambda ptq_result: ptq_result.accuracy) def analysis_session(self, title: str) -> "_EvalSession": """ Return a session for analysis only. :param title: Title of the session. :return: Analysis session. """ return self._get_session(title, _EvalSession) def ptq_session(self, title: str) -> "_PtqSession": """ Return a session for analysis only. :param title: Title of the session. :return: PTQ session. """ sess = self._get_session(title, _PtqSession) self._ptq_sessions.append(sess) return sess def _get_session(self, title: str, session_cls: type): """ Session factory. :param title: Title of the session. :session_cls: Class of the session. :return: Session object. """ session = session_cls(title, self._quantsim_factory, self._eval_func, self._dummy_input, self._dummy_input_on_cpu, results_dir=os.path.join(self._results_dir, ".trace")) self._all_sessions.append(session) return session def export_diagnostics(self) -> str: """ Export diagnostics in html format. :return: Diagnostics string in html format. """ loader = jinja2.FileSystemLoader(os.path.dirname(os.path.abspath(__file__))) env = jinja2.Environment(loader=loader) template = env.get_template("auto_quant_diagnostics_template.html") if any(sess.diagnostics.contains_bokeh() for sess in self._all_sessions): from bokeh.resources import CDN head = CDN.render() else: head = "" body = { sess.title: sess.diagnostics for sess in self._all_sessions if not sess.diagnostics.is_empty() } html = template.render(head=head, body=body) filename = os.path.join(self._results_dir, "diagnostics.html") with open(filename, "w") as f: f.write(html) return html class _EvalSession: """ Evaluation session for AutoQuant. Each session object contains a title and diagnostics produced during the session. The collected diagnostics will be exported into a html file by _EvalManager. """ def __init__( self, title: str, quantsim_factory: Callable, eval_func: Callable[[torch.nn.Module], float], dummy_input: Union[torch.Tensor, Tuple], dummy_input_on_cpu: Union[torch.Tensor, Tuple], results_dir: str ): """ :param title: Title of the session. :param quantsim_factory: A factory function that returns QuantizationSimModel. :param eval_func: Evaluation function. :param dummy_input: Dummy input to the model. Assumed to be located on the same device as the model. :param dummy_input_on_cpu: Dummy input to the model in CPU memory. :param results_dir: Base directory to save the temporary serialized model. """ self._title = title self._quantsim_factory = quantsim_factory self._eval_func = eval_func self._dummy_input = dummy_input self._dummy_input_on_cpu = dummy_input_on_cpu self._results_dir = results_dir self._spinner = None os.makedirs(self._results_dir, exist_ok=True) self._diagnostics = Diagnostics() # Map session title to file name. # e.g. title: "Cross-Layer Equalization" -> filename: "cross_layer_equalization" self._filename = self._title.lower().replace("-", " ") self._filename = "_".join(self._filename.split()) @property def title(self): """Getter of self._title.""" return self._title @property def diagnostics(self): """Getter of self._diagnostics.""" return self._diagnostics def eval(self, model: torch.nn.Module, **kwargs): """ Evaluate the model. :param model: Model to evaluate. :param **kwargs: Additional arguments to the quantsim factory. :return: Eval score. """ sim = self._quantsim_factory(model, self._dummy_input, **kwargs) acc = self._eval_func(sim.model) return acc def __enter__(self): self._spinner = Spinner(self._title) self._spinner.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): if self._spinner is not None: self._spinner.__exit__(exc_type, exc_val, exc_tb) class _PtqSession(_EvalSession): """ PTQ session. Each PTQ session object should call `set_ptq_result` exactly once inside a with-as block. """ def __init__(self, *args, **kwargs): super(_PtqSession, self).__init__(*args, **kwargs) self._ptq_result = None @property def ptq_result(self) -> PtqResult: """Getter of self._ptq_result.""" if self._ptq_result is None: raise RuntimeError return self._ptq_result def set_ptq_result( self, applied_techniques: List[str], model: torch.nn.Module = None, sim: QuantizationSimModel = None, acc: float = None, export_kwargs: Mapping = None, **kwargs ) -> None: """ Set the result of PTQ. Should be called exactly once inside a with-as block. Exactly one among model and (sim, acc) pair should be specified. 1) If sim and acc is specified, save them as the result of this session. 2) If model is specified, evaluate the quantized accuracy of the model and save the result. :param model: Result of PTQ. :param sim: Result of PTQ. The quamtization encoding (compute_encodings()) is assumed to have been computed in advance. :param acc: Eval score. :param **kwargs: Additional arguments to the quantsim factory. :return: None """ if export_kwargs is None: export_kwargs = {} if sim is None: assert acc is None assert model is not None sim = self._quantsim_factory(model, self._dummy_input, **kwargs) acc = self._eval_func(sim.model) else: assert acc is not None assert model is None self._set_ptq_result(sim, acc, applied_techniques, export_kwargs) def _set_ptq_result( self, sim: QuantizationSimModel, acc: float, applied_techniques: List[str], export_kwargs: Mapping, ) -> PtqResult: """ Set the result of PTQ. Should be called exactly once inside a with-as block. :param sim: Result of PTQ. The quamtization encoding (compute_encodings()) is assumed to have been computed in advance. :param acc: Eval score. :param export_kwargs: Additional kwargs for sim.export :return: PtqResult object. """ if self._ptq_result is not None: raise RuntimeError( "sess.eval() can be called only once per each _EvalSession instance." ) device = utils.get_device(sim.model) model_path, encoding_path = self._export(sim, export_kwargs) self._ptq_result = PtqResult( model_path=model_path, device=device, encoding_path=encoding_path, accuracy=acc, applied_techniques=applied_techniques, ) return self._ptq_result def _export(self, sim: QuantizationSimModel, export_kwargs: Mapping) -> Tuple[str, str]: """ Export quantsim. :param sim: QuantizationSimModel object to export. :param export_kwargs: Additional kwargs for sim.export :return: The paths where model and encoding are saved """ sim.export(path=self._results_dir, filename_prefix=self._filename, dummy_input=self._dummy_input_on_cpu, **export_kwargs) model_path = os.path.join(self._results_dir, f"{self._filename}.pth") encoding_path = os.path.join(self._results_dir, f"{self._filename}.encodings") _logger.info("The results of %s is saved in %s and %s.", self._title, model_path, encoding_path) return model_path, encoding_path def __exit__(self, exc_type, exc_val, exc_tb): """Raises error if set_ptq_result is not called.""" super(_PtqSession, self).__exit__(exc_type, exc_val, exc_tb) if exc_val is not None: return if self._ptq_result is None: raise RuntimeError _logger.info("Session finished: %s. (eval score: %f)", self._title, self._ptq_result.accuracy) @contextlib.contextmanager def spy_auto_quant(auto_quant: "AutoQuant"): """ Install a spy that collects the handles to the ptq result of each stage of AutoQuant. Typical usage:: >>> auto_quant = AutoQuant(...) ... with auto_quant_spy(auto_quant) as spy: ... _ = auto_quant.apply(...) ... ... for result in spy.get_all_ptq_results(): ... print(result.applied_techniques) ... print(result.accuracy) ... print(result.encoding_path) ... model = result.load_model() ... ... """ # pylint: disable=protected-access class Spy: """ Spy that collects the handles to the ptq result of each stage of AutoQuant. """ def __init__(self): self._eval_manager = None def get_all_ptq_results(self) -> List[PtqResult]: """Return handles to the results of AutoQuant""" if self._eval_manager is None: return [] return [sess.ptq_result for sess in self._eval_manager._ptq_sessions] spy = Spy() _auto_quant_main = auto_quant._auto_quant_main def _auto_quant_main_wrapper(fp32_model, target_acc, dummy_input, eval_manager, results_dir="/tmp"): spy._eval_manager = eval_manager return _auto_quant_main(fp32_model, target_acc, dummy_input, eval_manager, results_dir) try: setattr(auto_quant, "_auto_quant_main", _auto_quant_main_wrapper) yield spy finally: setattr(auto_quant, "_auto_quant_main", _auto_quant_main)