Source code for aimet_torch.v2.quant_analyzer

# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2024, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

""" Quant Analyzer for AIMET v2"""

import os
import contextlib
from collections import namedtuple
from typing import Tuple, List, Type, Optional, Generator
import torch

from aimet_common.quant_analyzer import export_stats_histogram_plot
from aimet_torch._base.quant_analyzer import QuantAnalyzerBase
from aimet_torch.v2.quantsim import QuantizationSimModel
from aimet_torch.v2.nn.base import BaseQuantizationMixin
from aimet_torch.v2.quantization.base import QuantizerBase
from aimet_torch.v2.quantization.encoding_analyzer import _HistogramObserver, _Histogram
from aimet_torch.v2.batch_norm_fold import fold_all_batch_norms


V1Encoding = namedtuple('V1Encoding', ['min', 'max'])


[docs] class QuantAnalyzer(QuantAnalyzerBase): """ QuantAnalyzer tool provides 1) model sensitivity to weight and activation quantization 2) per layer sensitivity analysis 3) per layer encoding (min - max range) 4) per PDF analysis and 5) per layer MSE analysis """ @staticmethod def _get_quantsim_cls() -> Type[QuantizationSimModel]: return QuantizationSimModel @staticmethod def _get_quant_wrapper_type() -> Tuple[Type]: return (BaseQuantizationMixin,) # pylint: disable=no-self-use def _create_and_export_stats_histogram_plot(self, quantizer: QuantizerBase, results_dir: str, title: str, ): """ For given quantizer, create and export histogram (PDF) of statistics in html format. :param quantizer: Quantizer. :param results_dir: Directory to save the results. :param title: Title of the plot. """ os.makedirs(results_dir, exist_ok=True) assert isinstance(quantizer.encoding_analyzer.observer, _HistogramObserver) v2_histograms = quantizer.encoding_analyzer.observer.get_stats() histograms = self._convert_to_v1_histograms(v2_histograms) encodings = self._get_quantizer_encodings(quantizer) for index, (histogram, encoding) in enumerate(zip(histograms, encodings)): export_stats_histogram_plot(histogram, encoding, results_dir, title=f"{title}_{index}") @staticmethod def _enable_disable_quantizers(quantizers: List[QuantizerBase], enabled: bool): """ For given list of quantizers, set (enable/disable) quantizer's enabled. :param quantizers: List of quantizers. :param enabled: Enabled flag. """ raise RuntimeError("Changing enabled attribute is not allowed in quantsim v2") @classmethod def _disable_param_quantizers(cls, sim: QuantizationSimModel): # pylint: disable=protected-access ctx = contextlib.ExitStack() for quant_wrapper in cls._get_quantized_modules(sim): ctx.enter_context(quant_wrapper._remove_param_quantizers()) return ctx @classmethod def _disable_activation_quantizers(cls, sim: QuantizationSimModel): # pylint: disable=protected-access ctx = contextlib.ExitStack() for quant_wrapper in cls._get_quantized_modules(sim): ctx.enter_context(quant_wrapper._remove_activation_quantizers()) return ctx @staticmethod def _disable_quant_wrapper(module: BaseQuantizationMixin): # pylint: disable=protected-access return module._remove_all_quantizers() @staticmethod def _convert_to_v1_histograms(histograms: List[_Histogram]) -> List: v1_histograms = [] for hist in histograms: assert hist is not None, "Cannot find histogram data in quantizer" hist_sum = torch.sum(hist.histogram).item() v1_hist = [] for bin_edge, hist_value in zip(hist.bin_edges, hist.histogram): v1_hist.append((bin_edge.item(), hist_value.item() / hist_sum)) v1_histograms.append(v1_hist) return v1_histograms @staticmethod def _is_quantizer_enabled(quantizer: Optional[QuantizerBase]): return quantizer is not None @classmethod def _get_quantizer_encodings(cls, quantizer: QuantizerBase) -> Optional[List]: v1_encodings = [] encoding = quantizer.get_encodings() if not encoding: return None flatten_min = encoding.min.flatten() flatten_max = encoding.max.flatten() for encoding_min, encoding_max in zip(flatten_min, flatten_max): v1_encodings.append(V1Encoding(min=encoding_min.item(), max=encoding_max.item())) return v1_encodings @staticmethod def _get_quantized_modules(sim: QuantizationSimModel) -> Generator[BaseQuantizationMixin, None, None]: for module in sim.model.modules(): if isinstance(module, BaseQuantizationMixin): yield module @staticmethod def _fold_all_batch_norms(*args, **kwargs): return fold_all_batch_norms(*args, **kwargs)