# -*- mode: python -*-
# =============================================================================
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# @@-COPYRIGHT-END-@@
# =============================================================================
""" Quantsim for Keras """
from __future__ import annotations
from dataclasses import dataclass
import json
import os
from typing import Union, Dict, Tuple, Optional, List
import tensorflow as tf
from aimet_common import libpymo
from aimet_common.defs import QuantScheme, QuantizationDataType
from aimet_common.utils import AimetLogger, save_json_yaml
from aimet_common.quantsim import encoding_version, extract_global_quantizer_args
from aimet_tensorflow.keras.connectedgraph import ConnectedGraph
from aimet_tensorflow.keras.graphsearchtuils import GraphSearchUtils
from aimet_tensorflow.keras.quant_sim.qc_quantize_wrapper import QcQuantizeWrapper, QuantizerSettings
from aimet_tensorflow.keras.quant_sim.qc_mha_wrapper import QcQuantizableMultiHeadAttention
from aimet_tensorflow.keras.rnn.qc_quant_LSTM import QuantizedLSTM
from aimet_tensorflow.keras.quant_sim.tensor_quantizer import TensorQuantizer, ActivationTensorQuantizer, \
ParamPerTensorQuantizer, StaticGridPerChannelQuantizer, ParamPerChannelQuantizer
from aimet_tensorflow.keras.quantsim_config.quantsim_config import QuantSimConfigurator, INPUT_QUANTIZERS, \
OUTPUT_QUANTIZERS, PARAM_QUANTIZERS
from aimet_tensorflow.keras.utils.common import convert_h5_model_to_pb_model
from aimet_tensorflow.keras.defs import AxisHandling
import aimet_tensorflow.keras.utils.common as keras_common_utils
_logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.Quant)
unquantizable_modules = (tf.keras.layers.InputLayer, QcQuantizeWrapper)
substitutable_modules = {
tf.keras.layers.MultiHeadAttention: QcQuantizableMultiHeadAttention,
tf.keras.layers.LSTM: QuantizedLSTM
}
@dataclass
class QuantizationSimModelParams:
"""
Data class that holds parameters for QuantizationSimModel. Used specifically to rebuild after converting to TF frozen pb
"""
quant_scheme: Union[QuantScheme, str] = 'tf_enhanced'
rounding_mode: str = 'nearest'
default_output_bw: int = 8
default_param_bw: int = 8
in_place: bool = False
config_file: str = None
default_data_type: QuantizationDataType = QuantizationDataType.int
# pylint: disable=too-many-ancestors
# pylint: disable=too-many-instance-attributes
[docs]class QuantizationSimModel(tf.keras.Model):
"""
Implements mechanism to add quantization simulations ops to a model. This allows for off-target simulation of
inference accuracy. Also allows the model to be fine-tuned to counter the effects of quantization.
"""
# pylint: disable=too-many-arguments
# pylint: disable=unused-argument
def __init__(self, model, quant_scheme: Union[QuantScheme, str] = 'tf_enhanced', rounding_mode: str = 'nearest',
default_output_bw: int = 8, default_param_bw: int = 8, in_place: bool = False,
config_file: str = None, default_data_type: QuantizationDataType = QuantizationDataType.int):
"""
:param model: Model to quantize
:param quant_scheme: Quantization Scheme, currently supported schemes are post_training_tf and
post_training_tf_enhanced, defaults to post_training_tf_enhanced
:param rounding_mode: The round scheme to used. One of: 'nearest' or 'stochastic', defaults to 'nearest'.
:param default_output_bw: bitwidth to use for activation tensors, defaults to 8
:param default_param_bw: bitwidth to use for parameter tensors, defaults to 8
:param in_place: If True, then the given 'model' is modified in-place to add quant-sim nodes.
Only suggested use of this option is when the user wants to avoid creating a copy of the model
:param config_file: Path to a config file to use to specify rules for placing quant ops in the model
:param default_data_type: Default data type to use for quantizing all layer parameters.
Possible options are QuantizationDataType.int and QuantizationDataType.float.
Note that the mode default_data_type=QuantizationDataType.float is only supported with
default_output_bw=16 and default_param_bw=16
"""
super().__init__()
self._model_without_wrappers = model
if not in_place:
self._model_without_wrappers = tf.keras.models.clone_model(model)
n_weights = len(self._model_without_wrappers.weights)
self._model_without_wrappers.set_weights(model.get_weights()[:n_weights])
self._layer_name_to_quant_wrapper = {}
self._substituted_layer = {} # to hold the substituted layers
self._validate_model()
self.connected_graph = ConnectedGraph(self._model_without_wrappers)
self._quantsim_configurator = self._initialize_quantsim_configurator(quant_scheme, rounding_mode,
default_output_bw, default_param_bw,
default_data_type, config_file)
self.quant_scheme = quant_scheme
self._percentile_value = 100 # default percentile value
self.per_channel_quantization_enabled = self._quantsim_configurator.per_channel_quantization_flag
self.model = self._add_quantization_wrappers(quant_scheme, rounding_mode,
default_output_bw, default_param_bw, default_data_type)
self.quant_args = extract_global_quantizer_args(quant_scheme, self._quantsim_configurator)
self._params = QuantizationSimModelParams(quant_scheme, rounding_mode, default_output_bw, default_param_bw,
in_place, config_file, default_data_type)
def _validate_model(self):
"""
Check that model is appropriate for quantsim.
"""
multiple_inbound_node_layers = []
for layer in self._model_without_wrappers.layers:
if len(layer.inbound_nodes) > 1:
multiple_inbound_node_layers.append(layer.name)
if multiple_inbound_node_layers:
error_msg = (f'Layers with more than one inbound nodes are unsupported. This may occur if a layer is '
f'reused multiple times in the model definition.\n'
f'Layers with multiple inbound nodes: {multiple_inbound_node_layers}')
_logger.error(error_msg)
raise NotImplementedError(error_msg)
sep_conv_found = self.check_separable_conv(self._model_without_wrappers)
if sep_conv_found:
# Raising an assertion error incase there's SeparableConv2D in the model because in this case we have two sets of weights: Depthwise
# and Pointwise. For depthwise kernels, LAST TWO AXIS should be considered and for pointwise kernels LAST AXIS
# should be considered, which is not handled here. Running model preparer beforehand will resolve this as there the
# SeparableConv2D is splitted into two layers Depthwise and Pointwise seperately.
raise AssertionError("SeparableConv2D found in the model. Please run model preparer before calling QuantizationSimModel")
def check_separable_conv(self, model: tf.keras.models.Model | tf.keras.Sequential) -> bool:
"""
Checks for SeparableConv2D layer in the model
:param model: Keras Model
:return: Boolean value, True if SeperableConv layer is found else False
"""
for layer in model.layers:
if isinstance(layer, tf.keras.Sequential):
if self.check_separable_conv(layer):
return True
elif isinstance(layer, tf.keras.layers.SeparableConv2D):
return True
return False
def _get_quantizer_list(self) -> Tuple[List, List, List]:
"""
Method to provide a list of input, output and parameter quantizers
:return: Three lists containing input, paramater and output quantizers respectively
"""
input_quantizers = []
parameter_quantizers = []
output_quantizers = []
for wrapper in self.quant_wrappers():
for quantizer in wrapper.input_quantizers:
input_quantizers.append(quantizer)
for quantizer in wrapper.param_quantizers:
parameter_quantizers.append(quantizer)
for quantizer in wrapper.output_quantizers:
output_quantizers.append(quantizer)
return input_quantizers, parameter_quantizers, output_quantizers
def set_percentile_value(self, percentile_value: float):
"""
Set the percentile value to be used while computing encodings for quantizers having percentile quant scheme.
:param percentile_value: Percentile value to be set to
"""
if percentile_value < 90 or percentile_value > 100:
raise ValueError("Percentile value must be in range [90, 100]")
self._percentile_value = percentile_value
# Set the percentile value to the activation quantizers
input_quantizers, _, output_quantizers = self._get_quantizer_list()
for quantizer in input_quantizers + output_quantizers:
if quantizer.quant_scheme == QuantScheme.post_training_percentile:
quantizer.set_percentile_value(self._percentile_value)
def _initialize_quantsim_configurator(self, quant_scheme: Union[QuantScheme, str], rounding_mode: str,
default_output_bw: int, default_param_bw: int,
default_data_type: QuantizationDataType = QuantizationDataType.int,
config_file: str = None) -> QuantSimConfigurator:
"""
Initialize quantsim configurator
:param quant_scheme: Quantization Scheme
:param rounding_mode: The round scheme to used
:param default_output_bw: bitwidth to use for activation tensors
:param default_param_bw: bitwidth to use for parameter tensors
:param default_data_type: data type to use for the parameter tensors
:param config_file: Path to a config file to use to specify rules for placing quant ops in the model
:return: QuantSimConfigurator
"""
return QuantSimConfigurator(self.connected_graph, quant_scheme, rounding_mode,
default_output_bw, default_param_bw, default_data_type, config_file)
def _add_quantization_wrappers(self, quant_scheme, rounding_mode,
default_output_bw, default_param_bw, default_data_type):
"""
Add quantization wrappers to the model and return a new model with the wrappers inserted.
:param quant_scheme: Quantization scheme to use
:param rounding_mode: Rounding mode to use
:param default_output_bw: Default bitwidth for activation quantizers
:param default_param_bw: Default bitwidth for param quantizers
:param default_data_type: data type to use for param quantizers
"""
def wrap_layer(layer) -> tf.keras.layers.Layer:
"""
Function to wrap layers with QcQuantizeWrappers, used by keras clone_model()
:param layer: Layer to wrap
:return: Wrapped layer, or original layer if layer is not to be wrapped
"""
if isinstance(layer, tuple(substitutable_modules.keys())):
new_class = substitutable_modules[type(layer)]
config = layer.get_config()
config["copy_source_weights"] = layer.get_weights()
if isinstance(layer, tf.keras.layers.LSTM):
if isinstance(self._model_without_wrappers, tf.keras.Sequential):
config["is_sequential_model"] = True
# pylint: disable=protected-access
if self._quantsim_configurator._layer_to_config_dict[layer]["is_input_quantized"]["setting"]:
config["is_input_quantized"] = True
config["quant_scheme"] = quant_scheme
config["rounding_mode"] = rounding_mode
config["default_output_bw"] = default_output_bw
config["default_param_bw"] = default_param_bw
config["default_data_type"] = default_data_type
wrapped_layer = new_class.from_config(config)
self._substituted_layer[layer] = wrapped_layer
return wrapped_layer
if isinstance(layer, tf.keras.Sequential):
return tf.keras.models.clone_model(layer, clone_function=wrap_layer)
if isinstance(layer, unquantizable_modules) or layer.submodules:
return layer
activation_quant_settings = QuantizerSettings(default_output_bw, default_data_type, rounding_mode,
quant_scheme, False, False, False)
param_quant_settings = QuantizerSettings(default_param_bw, default_data_type, rounding_mode,
quant_scheme, False, False, False)
input_quantizers, output_quantizers, param_quantizers = self._get_quantizers_by_layer(layer)
wrapper = QcQuantizeWrapper(layer, activation_quant_settings, param_quant_settings,
num_inputs=len(layer.inbound_nodes[0].keras_inputs),
input_quantizers=input_quantizers,
output_quantizers=output_quantizers,
param_quantizers=param_quantizers,
per_channel_quantization_enabled=self.per_channel_quantization_enabled)
self._layer_name_to_quant_wrapper[layer.name] = wrapper
return wrapper
return tf.keras.models.clone_model(self._model_without_wrappers, clone_function=wrap_layer)
def _get_quantizers_by_layer(self, layer: tf.keras.layers.Layer) -> Tuple[Optional[ActivationTensorQuantizer],
Optional[ActivationTensorQuantizer],
Union[ParamPerTensorQuantizer,
ParamPerChannelQuantizer]]:
"""
Get input/output/param quantizers from quantizers dictionary or initialize quantizers if layer is not found
:param layer: Target layer
:return: tuple of input, output, param quantizers
"""
quantizers_dict = self._quantsim_configurator.get_quantizers_dict(layer)
if quantizers_dict is None:
_logger.warning("%s not found in quantizers dict, will generate quantizers automatically", layer.name)
input_quantizers = None
output_quantizers = None
param_quantizers = None
else:
input_quantizers = quantizers_dict.get(INPUT_QUANTIZERS)
output_quantizers = quantizers_dict.get(OUTPUT_QUANTIZERS)
param_quantizers = quantizers_dict.get(PARAM_QUANTIZERS)
return input_quantizers, output_quantizers, param_quantizers
@staticmethod
def _quantizer_to_name_tuple(quantizers: List[TensorQuantizer]) -> Tuple[Optional[List[str]]]:
"""
Converts a list of quantizers to a tuple of quantizer names
:param quantizers: quantizers
:return: tuple of quantizer names
"""
quant_list = []
if not quantizers:
return None
for quantizer in quantizers:
quant_list.append(quantizer.name)
return tuple(quant_list)
def get_quantizer_name_by_layer(self, layer: tf.keras.layers.Layer) -> Tuple[Optional[List[str]],
Optional[List[str]],
Optional[List[str]]]:
"""
Get the names of input, output and param quantizers
:param layer: the keras layer
:return: Tuple of quantizer names
"""
input_quantizers, output_quantizers, param_quantizers = self._get_quantizers_by_layer(layer)
output_quantizers_names = self._quantizer_to_name_tuple(output_quantizers)
input_quantizers_names = self._quantizer_to_name_tuple(input_quantizers)
parameter_quantizers_names = self._quantizer_to_name_tuple(param_quantizers)
return input_quantizers_names, output_quantizers_names, parameter_quantizers_names
def _disable_quantizers_in_folded_batchnorm(self):
"""
Disable input/output/param quantizers if layer is folded batch normalization
"""
for quantsim_wrapper in self._layer_name_to_quant_wrapper.values():
if GraphSearchUtils.is_folded_batch_normalization(quantsim_wrapper.original_layer):
for q in quantsim_wrapper.input_quantizers:
q.disable()
for q in quantsim_wrapper.output_quantizers:
q.disable()
for q in quantsim_wrapper.param_quantizers:
q.disable()
@staticmethod
def _get_encoding_dict_for_quantizer(quantizer: TensorQuantizer) -> Union[List[Dict[str, Union[str, int, float]]],
Dict[str, Union[str, int, float]]]:
"""
Get encoding dict for a tensor quantizer.
:param quantizer: Quantizer to get encoding info from
:return: Dictionary or List of dictionaries containing encodings info for the tensor quantizer
"""
if not isinstance(quantizer, ParamPerChannelQuantizer) or quantizer.data_type == QuantizationDataType.float:
quantizer_encodings = [quantizer.encoding]
else:
quantizer_encodings = quantizer.encoding
return [
{
'min': encoding.min,
'max': encoding.max,
'scale': encoding.delta,
'offset': int(encoding.offset),
'bitwidth': encoding.bw,
'is_symmetric': str(quantizer.is_symmetric),
'dtype': 'int'
} if quantizer.data_type == QuantizationDataType.int
else {'dtype': 'float', 'bitwidth': int(quantizer.bitwidth)}
for encoding in quantizer_encodings
]
def get_encodings_dict(self) -> Dict[str, Union[str, Dict]]:
"""
Get encodings dict containing all activation and parameter encodings info in the model
:return: Dictionary containing all activation and parameter encodings info in the model
"""
# pylint: disable=protected-access, too-many-branches
model_input_tensor_names = [inp.name for inp in self.model.inputs]
activation_encodings = {}
param_encodings = {}
for wrapper in self.quant_wrappers():
for idx, input_quantizer in enumerate(wrapper.input_quantizers):
if input_quantizer.is_encoding_valid() or input_quantizer.data_type == QuantizationDataType.float:
# because dense layers in quantizable MHA are not explicitly sublayers, they don't have their
# inbound_nodes parameter populated, so the name of the quantizer is used instead
if not wrapper._layer_to_wrap.inbound_nodes:
tensor_name = wrapper.name + "/" + input_quantizer.name + ":0"
else:
tensor_name = wrapper._layer_to_wrap.inbound_nodes[0].keras_inputs[idx].name
encoding_dict = self._get_encoding_dict_for_quantizer(input_quantizer)
if tensor_name in model_input_tensor_names:
tensor_name += ":0"
activation_encodings[tensor_name] = encoding_dict
for idx, param_quantizer in enumerate(wrapper.param_quantizers):
if param_quantizer.is_encoding_valid() or param_quantizer.data_type == QuantizationDataType.float:
param_name = wrapper._layer_to_wrap.weights[idx].name
encoding_dict = self._get_encoding_dict_for_quantizer(param_quantizer)
param_encodings[param_name] = encoding_dict
for idx, output_quantizer in enumerate(wrapper.output_quantizers):
if output_quantizer.is_encoding_valid() or output_quantizer.data_type == QuantizationDataType.float:
# because dense layers in quantizable MHA are not explicitly sublayers, they don't have their
# inbound_nodes parameter populated, so the name of the quantizer is used instead
if not wrapper._layer_to_wrap.inbound_nodes:
tensor_name = wrapper.name + ":0"
elif isinstance(wrapper._layer_to_wrap.output, List):
tensor_name = wrapper._layer_to_wrap.output[idx].name
else:
tensor_name = wrapper._layer_to_wrap.output.name
encoding_dict = self._get_encoding_dict_for_quantizer(output_quantizer)
activation_encodings[tensor_name] = encoding_dict
return {
'version': encoding_version,
'activation_encodings': activation_encodings,
'param_encodings': param_encodings,
'quantizer_args': self.quant_args if hasattr(self, "quant_args") else {}
}
[docs] def compute_encodings(self, forward_pass_callback, forward_pass_callback_args):
"""
Computes encodings for all quantization sim nodes in the model.
:param forward_pass_callback: A callback function that is expected to runs forward passes on a model.
This callback function should use representative data for the forward pass, so the calculated
encodings work for all data samples.
:param forward_pass_callback_args: These argument(s) are passed to the forward_pass_callback as-is. Up to
the user to determine the type of this parameter. E.g. could be simply an integer representing the number
of data samples to use. Or could be a tuple of parameters or an object representing something more
complex.
"""
ops_with_invalid_encodings = []
self._compute_and_set_parameter_encodings(ops_with_invalid_encodings)
self._set_op_mode_parameters(libpymo.TensorQuantizerOpMode.quantizeDequantize)
forward_pass_callback(self.model, forward_pass_callback_args)
for quant_wrapper in self.quant_wrappers():
quant_wrapper.compute_encoding(ops_with_invalid_encodings)
op_mode = self._param_op_mode_after_analysis(self.quant_scheme)
self._set_op_mode_parameters(op_mode)
if ops_with_invalid_encodings:
_logger.info('The following quantizers did not have valid encodings and have been set to passThrough mode: '
'%s', ops_with_invalid_encodings)
_logger.info('This can be due to the quantizers not having been evaluated during the forward pass in '
'compute encodings. Evaluation is required to collect statistics needed to compute valid '
'encodings.\n'
'As a result, the quantizers have been set to passThrough mode, meaning no quantization noise '
'will be simulated for these ops if they are evaluated in the future.\n'
'If this is not desired, amend the forward pass to evaluate tensors which require these ops '
'to be evaluated, and recompute encodings.')
def _set_op_mode_parameters(self, op_mode: libpymo.TensorQuantizerOpMode):
"""
Sets quant mode for parameters and if the encodings are invalid, then adds those wrappers
to wrappers_with_invalid_encodings
:param op_mode: Quant mode to set to
"""
for quantizer_info in self.quant_wrappers():
for param_quantizer in quantizer_info.param_quantizers:
if param_quantizer.is_enabled():
param_quantizer.quant_mode = op_mode
[docs] def export(self, path, filename_prefix, custom_objects=None, convert_to_pb=True):
"""
This method exports out the quant-sim model so it is ready to be run on-target.
Specifically, the following are saved
1. The sim-model is exported to a regular Keras model without any simulation ops
2. The quantization encodings are exported to a separate JSON-formatted file that can
then be imported by the on-target runtime (if desired)
:param path: path where to store model pth and encodings
:param filename_prefix: Prefix to use for filenames of the model pth and encodings files
:param custom_objects: If there are custom objects to load, Keras needs a dict of them to map them
"""
model_path = os.path.join(path, filename_prefix)
#TF Version 2.4 has bug i.e. save() in tf format don't work for unrolled LSTM.
for layer in self._model_without_wrappers.layers:
if isinstance(layer, tf.keras.layers.LSTM):
break
else:
self._model_without_wrappers.save(model_path)
self._model_without_wrappers.save(model_path + '.h5', save_format='h5')
# Conversion of saved h5 model to pb model for consumption by SNPE/QNN
try:
if convert_to_pb:
convert_h5_model_to_pb_model(f'{model_path}.h5', custom_objects=custom_objects)
except ValueError:
_logger.error("Could not convert h5 to frozen pb. "
"Please call export() again with custom_objects defined.")
raise
finally:
encodings_dict = self.get_encodings_dict()
encoding_file_path = os.path.join(path, filename_prefix + '.encodings')
save_json_yaml(encoding_file_path, encodings_dict)
def _compute_and_set_parameter_encodings(self, ops_with_invalid_encodings: List):
# pylint: disable=too-many-nested-blocks
for quantizer_wrapper in self.quant_wrappers():
for idx, param_quantizer in enumerate(quantizer_wrapper.param_quantizers):
if param_quantizer.is_enabled() and param_quantizer.data_type == QuantizationDataType.int:
# 0th input to our quant wrapper is the tensor being quantized
weight_tensor = quantizer_wrapper.original_layer.get_weights()[idx]
# Per-channel
if isinstance(param_quantizer, StaticGridPerChannelQuantizer):
for index, tensor_quantizer in enumerate(param_quantizer.tensor_quantizer):
if param_quantizer.axis_handling == AxisHandling.LAST_TWO_AXES.value:
last_two_axes_combined_shape = list(weight_tensor.shape[:-2]) + [-1]
channel_slice = weight_tensor.reshape(*last_two_axes_combined_shape)
channel_slice = channel_slice.take(index, channel_slice.ndim - 1)
elif isinstance(quantizer_wrapper.original_layer, tf.keras.layers.Conv2DTranspose):
if weight_tensor.ndim == 4:
channel_slice = weight_tensor.take(index, weight_tensor.ndim - 2)
else:
# For bias in Transpose layers
channel_slice = weight_tensor.take(index, weight_tensor.ndim - 1)
else:
channel_slice = weight_tensor.take(index, weight_tensor.ndim - 1)
tensor_quantizer.updateStats(channel_slice, False)
# Per-tensor
else:
tensor_quantizer = param_quantizer.tensor_quantizer
tensor_quantizer.updateStats(weight_tensor, False)
param_quantizer.compute_encoding(ops_with_invalid_encodings)
def set_and_freeze_param_encodings(self, encoding_path: str):
"""
Set and freeze parameter encodings from encodings JSON file
:param encoding_path: path from where to load parameter encodings file
"""
# Load parameter encodings file
with open(encoding_path) as json_file:
param_encodings = json.load(json_file)
for quant_wrapper in self.quant_wrappers():
quant_wrapper.set_and_freeze_param_encoding(param_encodings)
def load_encodings_to_sim(self, encoding_file_path: str):
"""
Loads the saved encodings to quant sim model
:param encoding_file_path: path from where to load encodings file
:return:
"""
# pylint: disable=protected-access, too-many-branches, too-many-locals, too-many-statements
# Load encodings file
with open(encoding_file_path) as json_file:
encodings = json.load(json_file)
param_encodings = encodings['param_encodings']
activation_encodings = encodings['activation_encodings']
for wrapper in self.quant_wrappers():
for idx, input_quantizer in enumerate(wrapper.input_quantizers):
# because dense layers in quantizable MHA and RNN are not explicitly sublayers, they don't have their
# inbound_nodes parameter populated, so the name of the quantizer is used instead
if not wrapper._layer_to_wrap.inbound_nodes:
tensor_name = wrapper.name + "/" + input_quantizer.name + ":0"
else:
tensor_name = wrapper._layer_to_wrap.inbound_nodes[0].keras_inputs[idx].name
if tensor_name in activation_encodings:
if not input_quantizer.is_enabled():
_logger.info("Not loading encodings for quantizer: %s as it is disabled", tensor_name)
continue
encoding, is_symmetric = keras_common_utils.create_encoding_from_dict(
activation_encodings[tensor_name][0])
input_quantizer.tensor_quantizer.isEncodingValid = True
input_quantizer.set_quantizer_encodings(encoding.bw, is_symmetric, encoding,
libpymo.TensorQuantizerOpMode.quantizeDequantize)
_logger.info("Setting encodings for : %s", tensor_name)
else:
if input_quantizer.is_enabled():
input_quantizer.disable()
_logger.info("Encoding for quantizer: %s is not present thus disabling it.", tensor_name)
for idx, param_quantizer in enumerate(wrapper.param_quantizers):
param_name = wrapper._layer_to_wrap.weights[idx].name
if param_name in param_encodings:
if not param_quantizer.is_enabled():
_logger.info("Not loading encodings for parameter: %s as quantizer is disabled", param_name)
continue
if isinstance(param_quantizer, StaticGridPerChannelQuantizer):
encoding, is_symmetric = keras_common_utils.create_encoding_from_dict(
param_encodings[param_name])
for tensor_quantizer in param_quantizer.tensor_quantizer:
tensor_quantizer.isEncodingValid = True
bw = encoding[0].bw
else:
encoding, is_symmetric = keras_common_utils.create_encoding_from_dict(
param_encodings[param_name][0])
param_quantizer.tensor_quantizer.isEncodingValid = True
bw = encoding.bw
param_quantizer.set_quantizer_encodings(bw, is_symmetric, encoding,
libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize)
_logger.info("Setting encodings for : %s", param_name)
else:
if param_quantizer.is_enabled():
param_quantizer.disable()
_logger.info("Encoding for parameter: %s not present thus disabling this quantizer.",
param_name)
# Loading encodings means that compute encodings was called. Therefore, these two lines set the correct
# op mode for the correct quant scheme and if the quantization was per channel or not.
op_mode = self._param_op_mode_after_analysis(self.quant_scheme)
self._set_op_mode_parameters(op_mode)
for idx, output_quantizer in enumerate(wrapper.output_quantizers):
# because dense layers in quantizable MHA are not explicitly sublayers, they don't have their
# inbound_nodes parameter populated, so the name of the quantizer is used instead
if not wrapper._layer_to_wrap.inbound_nodes:
tensor_name = wrapper.name + ":0"
else:
tensor_name = wrapper._layer_to_wrap.output.name
if tensor_name in activation_encodings:
if not output_quantizer.is_enabled():
_logger.info("Not loading encodings for quantizer: %s as it is disabled", tensor_name)
continue
encoding, is_symmetric = keras_common_utils.create_encoding_from_dict(
activation_encodings[tensor_name][0])
output_quantizer.tensor_quantizer.isEncodingValid = True
output_quantizer.set_quantizer_encodings(encoding.bw, is_symmetric, encoding,
libpymo.TensorQuantizerOpMode.quantizeDequantize)
_logger.info("Setting encodings for : %s", tensor_name)
else:
if output_quantizer.is_enabled():
output_quantizer.disable()
_logger.info("Encoding for quantizer: %s is not present thus disabling it.", tensor_name)
def _param_op_mode_after_analysis(self, quant_scheme) -> libpymo.TensorQuantizerOpMode:
"""
Returns quant mode to use for parameters after encodings have been computed
:param quant_scheme: Quantization scheme to use
:return: Quant mode to use
"""
if quant_scheme in [QuantScheme.training_range_learning_with_tf_init,
QuantScheme.training_range_learning_with_tf_enhanced_init] \
or self.per_channel_quantization_enabled:
return libpymo.TensorQuantizerOpMode.quantizeDequantize
return libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize
def quant_wrappers(self):
"""
Generator for yielding all quantization wrappers
"""
for layer in self.model.layers:
if isinstance(layer, QcQuantizeWrapper):
yield layer
if isinstance(layer, tuple(substitutable_modules.values())):
yield from layer.quant_wrappers()
# For Getting Quantizers from Sequantial Block
if isinstance(layer, tf.keras.Sequential):
yield from quant_wrappers_for_sequential_block(layer)
def get_quant_wrapper_for_layer_name(self, layer_name: str) -> QcQuantizeWrapper:
"""
Return qc quant wrapper corresponding to a layer name
:param layer_name: Layer name to get quantize wrapper for
:return: Qc quant wrapper corresponding to a layer name
"""
return self._layer_name_to_quant_wrapper.get(layer_name)
# pylint: disable=too-many-locals
def _fill_missing_encoding_min_max_gradients(self, gradients: list):
"""
Computes the encoding min/max gradients and populates the gradients list
:param gradients: gradients computed using GradientTape(gradients for encoding min/max will be `None`)
"""
def _find_weight_in_layer(weight_name: str, model_layer: tf.keras.layers.Layer):
for weight in model_layer.weights:
if weight.name.split(":")[0] == weight_name:
return weight
return None
# Mapping used to get the gradients of weights(kernel, bias etc)
weight_name_to_gradient = dict(zip([weight.name.split(":")[0] for weight in self.model.trainable_weights],
gradients))
# Mapping used to get index of encoding min/max gradients (which would be `None`) and fill them
weight_name_to_index = dict(zip([weight.name for weight in self.model.trainable_weights],
range(len(self.model.trainable_weights))))
# Only process layers where 'param_quantizers' is defined (i.e. QcQuantizeWrapper layers)
for layer in filter(lambda _layer: hasattr(_layer, 'param_quantizers'), self.model.layers):
for param_quantizer in layer.param_quantizers:
if param_quantizer.name in weight_name_to_gradient:
# Value of weight associated with this param quantizer
weight_tensor = _find_weight_in_layer(param_quantizer.name, layer.original_layer)
# Gradients of the weights
grad = weight_name_to_gradient[param_quantizer.name]
# Using the weights and it's gradients, compute gradients for encoding min/max
dloss_by_dmin, dloss_by_dmax = param_quantizer.get_gradients_for_encoding_min_max(weight_tensor,
grad)
enc_min_index = weight_name_to_index[param_quantizer.encoding_min.name]
enc_max_index = weight_name_to_index[param_quantizer.encoding_max.name]
gradients[enc_min_index] = dloss_by_dmin
gradients[enc_max_index] = dloss_by_dmax
# TODO: Remove this logic once this has been resolved in QNN/SNPE
# Go through activation quantizers (Input/Output) and set any ReLU's encoding min to 0
relu_quantize_wrappers = [
_layer for _layer in self.model.layers
if isinstance(_layer, QcQuantizeWrapper) and isinstance(_layer.original_layer, tf.keras.layers.ReLU)
]
def _set_encoding_min_grad_to_None(quantizer):
enc_min_index = weight_name_to_index[quantizer.encoding_min.name]
gradients[enc_min_index] = None
for relu_quantizer in relu_quantize_wrappers:
for output_quantizer in relu_quantizer.output_quantizers:
_set_encoding_min_grad_to_None(output_quantizer)
# pylint: disable=useless-super-delegation
def get_config(self):
return super().get_config()
def call(self, inputs, training=None, mask=None):
return self.model.call(inputs, training, mask)
def train_step(self, data):
"""
Custom training loop, equivalent to overriding `keras.Model.fit` function
Reference: https://keras.io/guides/customizing_what_happens_in_fit/
Only relevant when using range-learning, otherwise equivalent to `keras.Model.fit`
Param quantizers are disconnected in the op graph of the wrapped model
Because of this, the gradients are not computed for encoding min/max(when range learning is enabled)
This custom train_step function computes the missing gradients for encoding min/max of param quantizers
"""
x, y = data
with tf.GradientTape() as tape:
predictions = self(x, training=True)
loss = self.compiled_loss(y, predictions)
gradients = tape.gradient(loss, self.model.trainable_weights)
# Manually compute missing gradients for encoding min/max when using range learning
if self.quant_scheme in [QuantScheme.training_range_learning_with_tf_init,
QuantScheme.training_range_learning_with_tf_enhanced_init]:
self._fill_missing_encoding_min_max_gradients(gradients)
gradients_to_apply = [(gradient, weight) for gradient, weight in zip(gradients, self.model.trainable_weights)
if gradient is not None]
self.optimizer.apply_gradients(gradients_to_apply)
self.compiled_metrics.update_state(y, predictions)
return {m.name: m.result() for m in self.metrics}
def quant_wrappers_for_sequential_block(seq_block: tf.keras.Sequential):
"""
Generator for yielding all quantization wrappers for a Sequantial Block
"""
for layer in seq_block.layers:
if isinstance(layer, QcQuantizeWrapper):
yield layer
if isinstance(layer, tuple(substitutable_modules.values())):
yield from layer.quant_wrappers()
# in cases of nested Sequential Block
if isinstance(layer, tf.keras.Sequential):
yield from quant_wrappers_for_sequential_block(layer)