AIMET Visualization Compression API
Top-level API Compression
- class aimet_torch.visualize_serialized_data.VisualizeCompression(visualization_url)[source]
Updates bokeh server session document and publishes graphs/tables to the server with session id compression.
- VisualizeCompression.display_eval_scores(saved_eval_scores_dict_path)[source]
Publishes the evaluation scores table to the server.
- Parameters:
saved_eval_scores_dict_path – file path to the evaluation scores for each layer
- Returns:
None
Code Examples
Required imports
from decimal import Decimal
import torch
from torchvision import models
import aimet_common.defs
import aimet_torch.defs
import aimet_torch.utils
from aimet_common.utils import start_bokeh_server_session
from aimet_torch.compress import ModelCompressor
from aimet_torch.visualize_serialized_data import VisualizeCompression
Model Compression with Visualization Parameter
def model_compression_with_visualization(eval_func):
"""
Code example for compressing a model with a visualization url provided.
"""
process = None
try:
visualization_url, process = start_bokeh_server_session()
input_shape = (1, 3, 224, 224)
model = models.resnet18(pretrained=True).to(torch.device('cuda'))
modules_to_ignore = [model.conv1]
greedy_params = aimet_common.defs.GreedySelectionParameters(target_comp_ratio=Decimal(0.65),
num_comp_ratio_candidates=10,
saved_eval_scores_dict=
'../data/resnet18_eval_scores.pkl')
auto_params = aimet_torch.defs.SpatialSvdParameters.AutoModeParams(greedy_params,
modules_to_ignore=modules_to_ignore)
params = aimet_torch.defs.SpatialSvdParameters(aimet_torch.defs.SpatialSvdParameters.Mode.auto, auto_params,
multiplicity=8)
# If no visualization URL is provided, during model compression execution no visualizations will be published.
ModelCompressor.compress_model(model=model, eval_callback=eval_func, eval_iterations=5,
input_shape=input_shape,
compress_scheme=aimet_common.defs.CompressionScheme.spatial_svd,
cost_metric=aimet_common.defs.CostMetric.mac, parameters=params,
visualization_url=None)
comp_ratios_file_path = './data/greedy_selection_comp_ratios_list.pkl'
eval_scores_path = '../data/resnet18_eval_scores.pkl'
# A user can visualize the eval scores dictionary and optimal compression ratios by executing the following code.
compression_visualizations = VisualizeCompression(visualization_url)
compression_visualizations.display_eval_scores(eval_scores_path)
compression_visualizations.display_comp_ratio_plot(comp_ratios_file_path)
finally:
if process:
process.terminate()
process.join()