Source code for aimet_torch.quantsim

# -*- mode: python -*-
# =============================================================================
#  @@-COPYRIGHT-START-@@
#
#  Copyright (c) 2019-2024, Qualcomm Innovation Center, Inc. All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#
#  1. Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#
#  2. Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#
#  3. Neither the name of the copyright holder nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
#  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
#  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
#  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
#  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
#  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
#  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
#
#  SPDX-License-Identifier: BSD-3-Clause
#
#  @@-COPYRIGHT-END-@@
# =============================================================================

""" Implementation for simulating models running on Quantized hardware """
# pylint: disable=too-many-lines
from itertools import chain
import contextlib
import os
import io
import copy
import pickle
from typing import Tuple, List, Union, Dict, Callable, Optional, Any, runtime_checkable, Protocol, Mapping
from collections import OrderedDict, defaultdict
import json
import torch
import onnx
from packaging import version  # pylint: disable=wrong-import-order

import aimet_common.libpymo as libpymo
from aimet_common import quantsim

from aimet_common.connected_graph.connectedgraph_utils import CG_SPLIT
from aimet_common.utils import AimetLogger, save_json_yaml, log_with_error_and_assert_if_false
from aimet_common.defs import QuantScheme, QuantizationDataType, SupportedKernelsAction, QuantDtypeBwInfo
from aimet_common.quantsim import validate_quantsim_inputs, extract_global_quantizer_args
from aimet_common.quant_utils import get_conv_accum_bounds

from aimet_torch import elementwise_ops
from aimet_torch.quantsim_config.quantsim_config import QuantSimConfigurator
from aimet_torch.qc_quantize_op import QcQuantizeStandAloneBase, QcQuantizeWrapper, QcQuantizeOpMode, \
    StaticGridQuantWrapper, LearnedGridQuantWrapper, NativeTorchQuantWrapper, QUANTIZER_TYPE_INPUT, QUANTIZER_TYPE_OUTPUT
from aimet_torch.tensor_quantizer import initialize_learned_grid_quantizer_attributes, TensorQuantizer
from aimet_torch.qc_quantize_op import get_encoding_by_quantizer as _get_encoding_by_quantizer
from aimet_torch import torchscript_utils, utils, onnx_utils
from aimet_torch.utils import deprecated
from aimet_torch.onnx_utils import (
    OnnxSaver,
    OnnxExportApiArgs,
    CustomMarker,
    save_initializer_restored_onnx_graph,
)
from aimet_torch.meta.connectedgraph import ConnectedGraph, Op
from aimet_torch.qc_quantize_recurrent import QcQuantizeRecurrent
from aimet_torch.quantsim_config.builder import LazyQuantizeWrapper
from aimet_torch.experimental.v2.quantsim.export_utils import VALID_ENCODING_VERSIONS, _export_to_1_0_0


logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.Quant)

# If a torch module type is in this dictionary, call the corresponding quantized module constructor instead of wrapping
# it with QcQuantizeWrapper.
qc_quantize_modules_dict = {
    torch.nn.RNN: QcQuantizeRecurrent,
    torch.nn.LSTM: QcQuantizeRecurrent,
    torch.nn.GRU: QcQuantizeRecurrent
}

# Length of the string '._module_to_wrap'
MODULE_TO_WRAP_STRING_REVERSE_INDEX = -16

MAP_PYMO_TO_ROUND_MODE = {libpymo.RoundingMode.ROUND_NEAREST: 'nearest',
                          libpymo.RoundingMode.ROUND_STOCHASTIC: 'stochastic'}

SUPPORTED_KERNELS_ACTION = SupportedKernelsAction.warn_on_error



[docs]class QuantParams: """ Data type to hold quantization related params. """ def __init__(self, weight_bw: int = 8, act_bw: int = 8, round_mode: str = 'nearest', quant_scheme: Union[QuantScheme, str] = QuantScheme.post_training_tf_enhanced, config_file: str = None): """ Constructor :param weight_bw: Weight bitwidth (4-31) to use for quantizing layer weights. Default = 8 :param act_bw: Activation bitwidth(4-31) to use for quantizing layer activations. Default = 8 :param round_mode: Rounding mode. Supported options are 'nearest' or 'stochastic' :param quant_scheme: Quantization scheme. Supported options are 'tf_enhanced' or 'tf' or using Quant Scheme Enum QuantScheme.post_training_tf or QuantScheme.post_training_tf_enhanced :param config_file: Path to Configuration file for model quantizers """ self.weight_bw = weight_bw self.act_bw = act_bw self.round_mode = round_mode self.quant_scheme = quant_scheme self.config_file = config_file
@runtime_checkable class ExportableQuantModule(Protocol): """ Defines the minimum interface requirements for exporting encodings from a module. """ def export_input_encodings(self) -> List[List[Dict]]: """ Returns a list of input encodings, each represented as a List of Dicts """ def export_output_encodings(self) -> List[List[Dict]]: """ Returns a list of output encodings, each represented as a List of Dicts """ def export_param_encodings(self) -> Dict[str, List[Dict]]: """ Returns a dict of {param name: param encodings}, with each encoding represented as a List of Dicts """ def import_input_encodings(self, encodings: Mapping[str, Mapping], strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): """ Import input encodings represented in below format: { '0': dict, '1': dict, ... } """ def import_output_encodings(self, encodings: Mapping[str, Mapping], strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): """ Import output encodings represented in below format: { '0': dict, '1': dict, ... } """ def import_param_encodings(self, encodings: Mapping[str, Mapping], strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): """ Import parameter encodings represented in below format: { 'param_name_0': [dict, dict, ...], 'param_name_1': [dict, dict, ...], ... } """ def get_original_module(self) -> torch.nn.Module: """ Returns the floating point version of quantized module """ # Types of modules which cannot be quantized unquantizable_modules = ( QcQuantizeWrapper, QcQuantizeStandAloneBase, QcQuantizeRecurrent, ExportableQuantModule, torch.nn.Identity, )
[docs]class QuantizationSimModel: """ Implements mechanism to add quantization simulations ops to a model. This allows for off-target simulation of inference accuracy. Also allows the model to be fine-tuned to counter the effects of quantization. """ # pylint: disable=too-many-arguments, too-many-instance-attributes, too-many-locals, too-many-public-methods def __init__(self, model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], quant_scheme: Union[str, QuantScheme] = QuantScheme.post_training_tf_enhanced, rounding_mode: str = 'nearest', default_output_bw: int = 8, default_param_bw: int = 8, in_place: bool = False, config_file: str = None, default_data_type: QuantizationDataType = QuantizationDataType.int): """ Constructor for QuantizationSimModel. :param model: Model to add simulation ops to :param dummy_input: Dummy input to the model. Used to parse model graph. If the model has more than one input, pass a tuple. User is expected to place the tensors on the appropriate device. :param quant_scheme: Quantization scheme. The Quantization scheme is used to compute the Quantization encodings. There are multiple schemes available. Please refer the QuantScheme enum definition. :param rounding_mode: Rounding mode. Supported options are 'nearest' or 'stochastic' :param default_output_bw: Default bitwidth (4-31) to use for quantizing all layer inputs and outputs :param default_param_bw: Default bitwidth (4-31) to use for quantizing all layer parameters :param in_place: If True, then the given 'model' is modified in-place to add quant-sim nodes. Only suggested use of this option is when the user wants to avoid creating a copy of the model :param config_file: Path to Configuration file for model quantizers :param default_data_type: Default data type to use for quantizing all layer inputs, outputs and parameters. Possible options are QuantizationDataType.int and QuantizationDataType.float. Note that the mode default_data_type=QuantizationDataType.float is only supported with default_output_bw=16 or 32 and default_param_bw=16 or 32. """ # Perform sanity checks on inputs validate_quantsim_inputs(quant_scheme, rounding_mode, default_output_bw, default_param_bw, default_data_type) # save some parameters if in_place: self.model = model else: self.model = copy.deepcopy(model) try: self.connected_graph = ConnectedGraph(self.model, dummy_input) except (torch.jit.TracingCheckError, AssertionError): self.connected_graph = None if isinstance(quant_scheme, str): if quant_scheme == 'tf': quant_scheme = QuantScheme.post_training_tf elif quant_scheme == 'tf_enhanced': quant_scheme = QuantScheme.post_training_tf_enhanced elif quant_scheme == 'percentile': quant_scheme = QuantScheme.post_training_percentile self._quant_scheme = quant_scheme self._rounding_mode = rounding_mode self._default_output_bw = default_output_bw self._default_param_bw = default_param_bw self._config_file = config_file self._is_conditional = False self._module_marker_map = {} self._percentile_value = 100 # default percentile value self._excluded_layer_names = [] # Add quantization layers inout_tensor_shape = utils.get_inout_tensor_shape_per_module(self.model, dummy_input) num_inout_tensors = self._get_num_inout_tensors_from_tensor_shape_dict(inout_tensor_shape) inout_tensors_dtypes_for_cast_ops = utils.get_inout_tensors_dtypes_for_cast_modules(self.model, dummy_input) self._add_quantization_wrappers(self.model, num_inout_tensors, default_data_type) self._set_tensor_quantizers_for_consts(inout_tensor_shape) # Disable bias quantization self.exclude_param_from_quantization("bias") quantsim_configurator = self.configure_quantization_ops(config_file, default_output_bw, default_param_bw, default_data_type) self.quant_args = extract_global_quantizer_args(quant_scheme, quantsim_configurator) self._enable_output_quantizers_for_specific_cast_ops(inout_tensors_dtypes_for_cast_ops) # pylint: disable=protected-access self._hw_version = quantsim_configurator._get_hw_version() self._supported_kernels = quantsim_configurator.get_supported_kernels() self._validate_supported_kernels_for_quantizers(SUPPORTED_KERNELS_ACTION) self._apply_exception_rules() # Initialize real wrappers using collected information self._realize_quant_wrappers_in_model(self.model) def _realize_quant_wrappers_in_model(self, model: torch.nn.Module): """ Prepare QuantSim for compute encodings. Resets encodings for each quantizable layer and sets mode to Analysis. Realize quant wrappers using collected information in LazyQuantWrapper. :param model: model containing modules wrapped with LazyQuantWrapper """ for module_name, module_ref in model.named_children(): if isinstance(module_ref, LazyQuantizeWrapper): quantized_module = self._realize_quant_wrapper(module_ref) setattr(model, module_name, quantized_module) elif not utils.is_leaf_module(module_ref): self._realize_quant_wrappers_in_model(module_ref) @staticmethod def _realize_quant_wrapper(module: torch.nn.Module) -> QcQuantizeWrapper: return module.realize_v1_wrapper() def get_supported_kernels(self) -> Dict: """ Return _supported_kernels parsed from the config file :return: Dictionary containing supported_kernels """ return self._supported_kernels def __str__(self): """ Pretty-printed output indicating where in the model, quantizers have been activated :return: """ def print_quantizer_state(stream, quantizer, prefix_string): if quantizer.enabled: stream.write(f' {prefix_string}: bw={quantizer.bitwidth}, ' f'encoding-present={bool(quantizer.encoding)}\n') if quantizer.encoding: stream.write(f' {quantizer}') else: stream.write(f' {prefix_string}: Not quantized\n') stream.write(' -------\n') stream = io.StringIO(newline='\n') stream.write("-------------------------\n") stream.write("Quantized Model Report\n") stream.write("-------------------------\n") for layer_name, layer in self._get_qc_quantized_layers(self.model): stream.write('----------------------------------------------------------\n') stream.write('Layer: {}\n'.format(layer_name)) # Inputs if isinstance(layer.input_quantizers, dict): for name, quantizer in layer.input_quantizers.items(): print_quantizer_state(stream, quantizer, prefix_string=f"Input[{name}]") else: for index, quantizer in enumerate(layer.input_quantizers): print_quantizer_state(stream, quantizer, prefix_string=f"Input[{index}]") # Params for param_name, quantizer in layer.param_quantizers.items(): print_quantizer_state(stream, quantizer, prefix_string=f"Param[{param_name}]") # Outputs if isinstance(layer.output_quantizers, dict): for name, quantizer in layer.output_quantizers.items(): print_quantizer_state(stream, quantizer, prefix_string=f"Output[{name}]") else: for index, quantizer in enumerate(layer.output_quantizers): print_quantizer_state(stream, quantizer, prefix_string=f"Output[{index}]") return stream.getvalue() @staticmethod def prepare_sim_for_compute_encodings(sim: 'QuantizationSimModel'): """ Prepare QuantSim for compute encodings. Resets encodings for each quantizable layer and sets mode to Analysis. :param sim: QuantSim to prepare """ # pylint: disable=protected-access quantized_layers = sim._get_qc_quantized_layers(sim.model) for _, layer in quantized_layers: # Clear stats and encodings if they are present layer.reset_encodings() # And set the mode to analysis layer.set_mode(QcQuantizeOpMode.ANALYSIS) for _, layer in quantized_layers: # call only when quant scheme is percentile if sim._quant_scheme == QuantScheme.post_training_percentile: layer.set_percentile_value(sim._percentile_value) @staticmethod def compute_layer_encodings_for_sim(sim: 'QuantizationSimModel'): """ Compute encodings for each quantizable layer in sim after forward pass has been called. :param sim: QuantSim to compute encodings for """ # pylint: disable=protected-access quantized_layers = sim._get_qc_quantized_layers(sim.model) # Get the computed per-layer encodings and log them for name, layer in quantized_layers: layer.compute_encoding() # Before we return we set the mode to active - meaning ready for quantize/de-quantize # for layers with valid_encoding, otherwise we set to pass through if isinstance(layer, QcQuantizeRecurrent): sim.set_mode_for_recurrent_module(layer, name) else: # By default we want to set the Quantization wrappers to ACTIVE mode layer.set_mode(QcQuantizeOpMode.ACTIVE) sim.replace_wrappers_for_quantize_dequantize()
[docs] def compute_encodings(self, forward_pass_callback, forward_pass_callback_args): """ Computes encodings for all quantization sim nodes in the model. It is also used to find initial encodings for Range Learning :param forward_pass_callback: A callback function that simply runs forward passes on the model. This callback function should use representative data for the forward pass, so the calculated encodings work for all data samples. This callback internally chooses the number of data samples it wants to use for calculating encodings. :param forward_pass_callback_args: These argument(s) are passed to the forward_pass_callback as-is. Up to the user to determine the type of this parameter. E.g. could be simply an integer representing the number of data samples to use. Or could be a tuple of parameters or an object representing something more complex. If set to None, forward_pass_callback will be invoked with no parameters. :return: None """ QuantizationSimModel.prepare_sim_for_compute_encodings(self) # Run forward iterations so we can collect statistics to compute the appropriate encodings with utils.in_eval_mode(self.model), torch.no_grad(): _ = forward_pass_callback(self.model, forward_pass_callback_args) QuantizationSimModel.compute_layer_encodings_for_sim(self)
@classmethod def set_mode_for_recurrent_module(cls, layer: QcQuantizeRecurrent, name: str): """ Sets Recurrent module to active or pass through mode based on quantizer state :param layer: Qc Quantizer layer for recurrent module :param name: layer name :return: True if the encoding is invalid """ for quantizer_name, output_quantizer in layer.output_quantizers.items(): if output_quantizer.enabled: if output_quantizer.encoding: encoding = output_quantizer.encoding logger.debug("Encoding for %s-%s: min=%f, max=%f, offset=%f. delta=%f, bw=%f", name, quantizer_name, encoding.min, encoding.max, encoding.delta, encoding.offset, encoding.bw) for quantizer_name, input_quantizer in layer.input_quantizers.items(): if input_quantizer.enabled: if input_quantizer.encoding: encoding = input_quantizer.encoding logger.debug("Encoding for %s-%s: min=%f, max=%f, offset=%f. delta=%f, bw=%f", name, quantizer_name, encoding.min, encoding.max, encoding.delta, encoding.offset, encoding.bw) layer.set_mode(QcQuantizeOpMode.ACTIVE) def set_percentile_value(self, percentile_value: float): """ Set the percentile value to be used while computing encodings """ if percentile_value < 90 or percentile_value > 100: raise ValueError("Percentile value must be in range [90, 100]") self._percentile_value = percentile_value
[docs] def export(self, path: str, filename_prefix: str, dummy_input: Union[torch.Tensor, Tuple], onnx_export_args: Optional[Union[OnnxExportApiArgs, Dict]] = None, propagate_encodings: bool = False, export_to_torchscript: bool = False, use_embedded_encodings: bool = False, export_model: bool = True, filename_prefix_encodings: str = None): """ This method exports out the quant-sim model so it is ready to be run on-target. Specifically, the following are saved: 1. The sim-model is exported to a regular PyTorch model without any simulation ops 2. The quantization encodings are exported to a separate JSON-formatted file that can then be imported by the on-target runtime (if desired) 3. Optionally, An equivalent model in ONNX format is exported. In addition, nodes in the ONNX model are named the same as the corresponding PyTorch module names. This helps with matching ONNX node to their quant encoding from #2. :param path: path where to store model pth and encodings :param filename_prefix: Prefix to use for filenames of the model pth and encodings files :param dummy_input: Dummy input to the model. Used to parse model graph. It is required for the dummy_input to be placed on CPU. :param onnx_export_args: Optional export argument with onnx specific overrides provided as a dictionary or OnnxExportApiArgs object. If not provided, defaults to "opset_version" = None, "input_names" = None, "output_names" = None, and for torch version < 1.10.0, "enable_onnx_checker" = False. :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. Defaults to False. :param export_to_torchscript: If True, export to torchscript. Export to onnx otherwise. Defaults to False. :param use_embedded_encodings: If True, another onnx model embedded with fakequant nodes will be exported :param export_model: If True, then ONNX model is exported. When False, only encodings are exported. User should disable (False) this flag only if the corresponding ONNX model already exists in the path specified :param filename_prefix_encodings: File name prefix to be used when saving encodings. If None, then user defaults to filename_prefix value """ warning_str = 'Exporting encodings to yaml will be deprecated in a future release. Ensure that your ' \ 'code can work with the exported files ending in ".encodings" which are saved using json ' \ 'format. For the time being, if yaml export is needed, set aimet_common.utils.SAVE_TO_YAML to ' \ 'True.' logger.warning(warning_str) if not filename_prefix_encodings: filename_prefix_encodings = filename_prefix if quantsim.encoding_version not in VALID_ENCODING_VERSIONS: raise NotImplementedError(f'Encoding version {quantsim.encoding_version} not in set of valid encoding ' f'versions {VALID_ENCODING_VERSIONS}.') # save the quantized model and encodings model_filename = filename_prefix + '.pth' model_path = os.path.join(path, model_filename) # Create a version of the model without any quantization ops model_to_export = QuantizationSimModel.get_original_model(self.model) torch.save(model_to_export, model_path) if onnx_export_args is None: onnx_export_args = {'opset_version': None, 'input_names': None, 'output_names': None} if version.parse(torch.__version__) < version.parse("1.10.0") and isinstance(onnx_export_args, dict): onnx_export_args['enable_onnx_checker'] = False log_with_error_and_assert_if_false(isinstance(onnx_export_args, (OnnxExportApiArgs, dict)), logger, f'unsupported opt_args type={type(onnx_export_args)}') if use_embedded_encodings: QuantizationSimModel.save_model_with_embedded_quantization_nodes(self.model, path, filename_prefix, dummy_input, onnx_export_args, export_to_torchscript, self._is_conditional) else: if export_to_torchscript: self.export_torch_script_model_and_encodings(path, filename_prefix, filename_prefix_encodings, model_to_export, self.model, dummy_input, self._excluded_layer_names) else: self.export_onnx_model_and_encodings(path, filename_prefix, model_to_export, self.model, dummy_input, onnx_export_args, propagate_encodings, self._module_marker_map, self._is_conditional, self._excluded_layer_names, quantizer_args=self.quant_args, export_model=export_model, filename_prefix_encodings=filename_prefix_encodings)
@staticmethod def export_torch_script_model_and_encodings(path: str, filename_prefix: str, filename_prefix_encodings: str, original_model: torch.nn.Module, sim_model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], excluded_layer_names: List = None): """ This method exports a torchscript mode and the corresponding encodings :param path: path where to store model pth and encodings :param filename_prefix: Prefix to use for filenames of the model pth and encodings files :param filename_prefix_encodings: File name prefix for encodings. Can be same as filename_prefix :param original_model: model without the quantsim wrappers :param sim_model: model with the quantsim wrappers :param dummy_input: Dummy input to the model. Used to parse model graph. :param excluded_layer_names: List of names of layers that have been excluded from quantization. :return: None """ # Create torchscript model and obtain node to i/o tensor name map ts_path = os.path.join(path, filename_prefix + '.torchscript.pth') with utils.in_eval_mode(original_model), torch.no_grad(): torchscript_utils.create_torch_script_model(ts_path, original_model, dummy_input) trace = torch.jit.load(ts_path) torch_script_node_io_tensor_map, valid_param_set = \ torchscript_utils.get_node_to_io_tensor_names_map(original_model, trace, dummy_input) # Export encodings QuantizationSimModel._export_encodings_to_files(sim_model, path, filename_prefix_encodings, torch_script_node_io_tensor_map, valid_param_set, excluded_layer_names, propagate_encodings=False) @staticmethod def export_onnx_model_and_encodings(path: str, filename_prefix: str, original_model: torch.nn.Module, sim_model: torch.nn.Module, dummy_input: Union[torch.Tensor, Tuple], onnx_export_args: Union[OnnxExportApiArgs, dict], propagate_encodings: bool, module_marker_map: Dict[torch.nn.Module, torch.Tensor] = None, is_conditional: bool = False, excluded_layer_names: List = None, quantizer_args: Dict = None, export_model: bool = True, filename_prefix_encodings: str = None): """ This method exports a onnx model and the corresponding encodings :param path: path where to store model pth and encodings :param filename_prefix: Prefix to use for filenames of the model pth and encodings files :param original_model: model without the quantsim wrappers :param sim_model: model with the quantsim wrappers :param dummy_input: Dummy input to the model. Used to parse model graph. :param onnx_export_args: Additional onnx export args including export api overrides :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. :param module_marker_map: Maps module names to traced custom markers (only used for conditional models) :param is_conditional: True if model is conditional, False otherwise :param excluded_layer_names: List of names of layers that have been excluded from quantization. :param export_model: If True, then ONNX model is exported. When False, only encodings are exported. User should disable (False) this flag only if the corresponding ONNX model already exists in the path specified :param filename_prefix_encodings: File name prefix to be used when saving encodings. If None, then user defaults to filename_prefix value :return: None """ # pylint: disable=too-many-locals if not filename_prefix_encodings: filename_prefix_encodings = filename_prefix onnx_path = os.path.join(path, filename_prefix + '.onnx') if export_model: if version.parse(torch.__version__) >= version.parse("1.13.0") and onnx_utils.EXPORT_TO_ONNX_DIRECT: logger.debug('Exporting quantsim using torch.onnx.export directly') original_model.cpu() if isinstance(onnx_export_args, OnnxExportApiArgs): kwargs = onnx_export_args.kwargs else: kwargs = onnx_export_args torch.onnx.export(original_model, dummy_input, onnx_path, **kwargs) save_initializer_restored_onnx_graph(onnx_path, onnx_path) else: # Create onnx model and obtain node to i/o tensor name map OnnxSaver.create_onnx_model_with_pytorch_layer_names(onnx_path, original_model, dummy_input, is_conditional, module_marker_map, onnx_export_args) assert os.path.exists(onnx_path), 'The onnx model does not exist in the location specified. Please re-run export' \ 'with export_model flag as True or check path/file_name' onnx_model = onnx.load(onnx_path) onnx_node_to_io_tensor_map, valid_param_set = OnnxSaver.get_onnx_node_to_io_tensor_names_map(onnx_model) # Export encodings QuantizationSimModel._export_encodings_to_files(sim_model, path, filename_prefix_encodings, onnx_node_to_io_tensor_map, valid_param_set, excluded_layer_names, propagate_encodings, quantizer_args=quantizer_args) def save_encodings_to_json(self, path: str, filename_prefix: str): """ Save encodings in the model to json. :param path: Path to save file :param filename_prefix: Filename to use for saved file """ activation_encodings, param_encodings = self.get_activation_param_encodings() encodings_dict = {'activation_encodings': activation_encodings, 'param_encodings': param_encodings} with open(os.path.join(path, filename_prefix + '.json'), 'w') as encoding_json: json.dump(encodings_dict, encoding_json, sort_keys=True, indent=4) def get_activation_param_encodings(self): """ Get activation and param encodings from sim.model. :return: Tuple of activation and param encodings dictionaries mapping torch module names to encodings """ activation_encodings = OrderedDict() param_encodings = OrderedDict() for module_name, module in self.model.named_modules(): if not isinstance(module, ExportableQuantModule): continue activation_encodings[module_name] = defaultdict(OrderedDict) for i, encoding in enumerate(module.export_input_encodings()): if not encoding: continue if len(encoding) == 1: encoding = encoding[0] activation_encodings[module_name]['input'][i] = encoding for i, encoding in enumerate(module.export_output_encodings()): if not encoding: continue if len(encoding) == 1: encoding = encoding[0] activation_encodings[module_name]['output'][i] = encoding if not activation_encodings[module_name]: del activation_encodings[module_name] for param_name, encoding in module.export_param_encodings().items(): if not encoding: continue param_encodings[f'{module_name}.{param_name}'] = encoding return activation_encodings, param_encodings def exclude_layers_from_quantization(self, layers_to_exclude: List[torch.nn.Module]): """ Excludes certain layers from being quantized-dequantized by the simulator :param layers_to_exclude: List of torch layers to exclude :return: None """ # Save the excluded layer names. Do not save the modules since the wrapper removal depends on # reference count to automatically remove the layers. module_to_name_dict = utils.get_module_to_name_dict(self.model) quant_layers_to_exclude = [] quant_cls = (QcQuantizeRecurrent, LazyQuantizeWrapper, ExportableQuantModule) for layer in layers_to_exclude: for module in layer.modules(): if isinstance(module, quant_cls): quant_layers_to_exclude.append(module) excluded_module_name = module_to_name_dict.get(module) self._excluded_layer_names.append(excluded_module_name) self._remove_quantization_wrappers(self.model, quant_layers_to_exclude) def exclude_param_from_quantization(self, param_name_to_exclude: str): """ Excludes all parameters matching 'param_name' from quantization :param param_name_to_exclude: Name of the parameter to exclude :return: None """ for module in self.model.modules(): if isinstance(module, (QcQuantizeWrapper, QcQuantizeRecurrent, LazyQuantizeWrapper)): if param_name_to_exclude in module.param_quantizers: module.param_quantizers[param_name_to_exclude].enabled = False def _replace_quantization_wrapper(self, model, device): """ Recursively remove quantization wrappers from all appropriate modules starting with a given module :param model: model for which PostTrainingWrapper gets replaced with Trainable wrapped module :param device: device on which model is present :return: None """ for module_name, module_ref in model.named_children(): if isinstance(module_ref, StaticGridQuantWrapper): # Create a Trainable wrapper and copy properties of PostTrainingWrapper to the Trainable wrapper quantized_module = self._construct_and_initialize_trainable_wrapper(module_ref, device) setattr(model, module_name, quantized_module) elif isinstance(module_ref, QcQuantizeRecurrent): # Set Recurrent layer for training mode module_ref.construct_and_initialize_trainable_quantizers(self._quant_scheme) # Recursively call children modules if present if not utils.is_leaf_module(module_ref): self._replace_quantization_wrapper(module_ref, device) def _construct_and_initialize_trainable_wrapper(self, post_training_module: StaticGridQuantWrapper, device: torch.device) -> LearnedGridQuantWrapper: """ Copies following tensor quantizer attributes from StaticGridQuantWrapper to LearnedGridQuantWrapper to avoid any mismatch. - enabled - bitwidth - encoding - use_symmetric_encodings - use_strict_symmetric - use_unsigned_symmetric :param post_training_module: StaticGridQuantWrapper wrapped module :param device: device on which model is present :return: trainable_module: QcTrainable wrapper module """ # pylint: disable=protected-access module = post_training_module._module_to_wrap num_inputs = len(post_training_module.input_quantizers) num_outputs = len(post_training_module.output_quantizers) # Creating a LearnedGridQuantWrapper module trainable_module = LearnedGridQuantWrapper(module, self._default_param_bw, self._default_output_bw, self._rounding_mode, self._quant_scheme, device=device, num_inputs=num_inputs, num_outputs=num_outputs, data_type=QuantizationDataType.int) # Copy user settable attributes for outputs for index, quantizer in enumerate(post_training_module.output_quantizers): initialize_learned_grid_quantizer_attributes(trainable_module.output_quantizers[index], quantizer) if trainable_module.output_quantizers[index].encoding_min_max_fixed_vals is not None: trainable_module.output_quantizers[index].freeze_encoding() # Copy user settable attributes for inputs for index, quantizer in enumerate(post_training_module.input_quantizers): initialize_learned_grid_quantizer_attributes(trainable_module.input_quantizers[index], quantizer) if trainable_module.input_quantizers[index].encoding_min_max_fixed_vals is not None: trainable_module.input_quantizers[index].freeze_encoding() # Copy user settable attributes for params for name, quantizer in post_training_module.param_quantizers.items(): learned_grid_quantizer = trainable_module.param_quantizers[name] initialize_learned_grid_quantizer_attributes(learned_grid_quantizer, quantizer) if learned_grid_quantizer.encoding_min_max_fixed_vals is not None: learned_grid_quantizer.freeze_encoding() return trainable_module def replace_wrappers_for_quantize_dequantize(self): """ Replaces StaticGridWrapper with LearnedGridWrapper """ if self._quant_scheme == QuantScheme.training_range_learning_with_tf_init or self._quant_scheme == \ QuantScheme.training_range_learning_with_tf_enhanced_init: try: device = utils.get_device(self.model) except StopIteration: # Model doesn't have any parameter. # Set device to cpu by default. device = torch.device('cpu') self._replace_quantization_wrapper(self.model, device) @staticmethod def _validate_quantsim_inputs(quant_scheme: Union[str, QuantScheme], rounding_mode: str, default_output_bw: int, default_param_bw: int, data_type: QuantizationDataType = QuantizationDataType.int): """ Perform sanity checks on inputs to QuantSim NOTE: This method will be deprecated. Call aimet_common.quantsim.validate_quantsim_inputs directly instead. :param quant_scheme: Quantization scheme. Supported options are 'tf_enhanced' or 'tf' or using Quant Scheme Enum QuantScheme.post_training_tf or QuantScheme.post_training_tf_enhanced :param rounding_mode: Rounding mode. Supported options are 'nearest' or 'stochastic' :param default_output_bw: Default bitwidth (4-31) to use for quantizing layer inputs and outputs :param default_param_bw: Default bitwidth (4-31) to use for quantizing layer parameters :param data_type: Data type of the quantized values (int or float). """ validate_quantsim_inputs(quant_scheme, rounding_mode, default_output_bw, default_param_bw, data_type) @staticmethod def _find_next_downstream_modules(op): downstream_modules = [] for succeeding_op in list(op.output.consumers): if succeeding_op.get_module(): downstream_modules.append(succeeding_op.get_module()) elif succeeding_op.type == CG_SPLIT: downstream_modules += QuantizationSimModel._find_next_downstream_modules(succeeding_op) return downstream_modules @staticmethod def _export_encodings_to_files(sim_model: torch.nn.Module, path: str, filename_prefix: str, op_to_io_tensor_map: Dict, valid_param_set: set, excluded_layer_names, propagate_encodings: bool, quantizer_args: Dict = None): """ Save the quantized model weight encodings :param sim_model: Quantsim model to export encodings for :param path: path where to store model pth and encodings :param filename_prefix: filename to store exported weight encodings in json format :param op_to_io_tensor_map: Dictionary of layer to I/O tensor mapping from onnx or torch script model :param valid_param_set: a set of valid param input names in model :param excluded_layer_names: List of names of layers that have been excluded from quantization. :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. :param quantizer_args """ # pylint: disable=too-many-locals # Create a dictionary to export to JSON activation_encodings_onnx = {} activation_encodings_torch = {} param_encodings = {} layers_to_onnx_op_names = onnx_utils.get_layers_in_io_tensor_map(op_to_io_tensor_map) tensor_to_consumer_map = onnx_utils.get_tensor_to_consumer_map(op_to_io_tensor_map) layer_names_not_found = [] tensor_to_quantizer_map = {} for layer_name, layer in sim_model.named_modules(): if not isinstance(layer, (ExportableQuantModule, QcQuantizeRecurrent)): continue if not has_valid_encodings(layer): continue # TODO: specifically call out dropout layers here since they are specifically switched out during export. # These ops should eventually be reworked as part of math invariant ops to ignore quantization altogether. # pylint: disable=protected-access if isinstance(layer, ExportableQuantModule) and isinstance(layer.get_original_module(), utils.DROPOUT_TYPES): continue if layer_name not in layers_to_onnx_op_names.keys(): layer_names_not_found.append(layer_name) else: QuantizationSimModel._update_encoding_dicts_for_layer(layer, layer_name, activation_encodings_onnx, activation_encodings_torch, param_encodings, op_to_io_tensor_map, valid_param_set, propagate_encodings, tensor_to_consumer_map, layers_to_onnx_op_names, tensor_to_quantizer_map) if layer_names_not_found: logger.warning("The following layers were not found in the exported onnx model. Encodings for these layers" " will not appear in the exported encodings file:\n" "%s\n" "This can be due to several reasons:\n" "\t- The layer is set to quantize with float datatype, but was not exercised in compute " "encodings. Not an issue if the layer is not meant to be run.\n" "\t- The layer has valid encodings but was not seen while exporting to onnx using the dummy " "input provided in sim.export(). Ensure that the dummy input covers all layers.", layer_names_not_found) if quantsim.encoding_version == '0.6.1': encodings_dict_onnx = {'version': quantsim.encoding_version, 'activation_encodings': activation_encodings_onnx, 'param_encodings': param_encodings, 'excluded_layers': excluded_layer_names} if quantizer_args: encodings_dict_onnx.update({'quantizer_args': quantizer_args}) logger.info("Layers excluded from quantization: %s", excluded_layer_names) # export weight encodings to output json file encoding_file_path = os.path.join(path, filename_prefix + '.encodings') save_json_yaml(encoding_file_path, encodings_dict_onnx) else: _export_to_1_0_0(path, filename_prefix, activation_encodings_onnx, param_encodings, tensor_to_quantizer_map, excluded_layer_names, quantizer_args) # Export torch.encodings used for saving/loading common to 0.6.1 and 1.0.0 versions encodings_dict_pytorch = {'version': quantsim.encoding_version, 'activation_encodings': activation_encodings_torch, 'param_encodings': param_encodings, 'excluded_layers': excluded_layer_names} if quantizer_args: encodings_dict_pytorch.update({'quantizer_args': quantizer_args}) encoding_file_path_pytorch = os.path.join(path, filename_prefix + '_torch' + '.encodings') save_json_yaml(encoding_file_path_pytorch, encodings_dict_pytorch) @staticmethod def _update_param_encodings_dict_for_layer(layer: ExportableQuantModule, layer_name: str, param_encodings: Dict, valid_param_set: set, tensor_to_quantizer_map: Dict): """ :param layer: layer as torch.nn.Module :param layer_name : Name of the layer :param param_encodings: dictionary of param encodings :param valid_param_set: a set of valid param input names in model """ for orig_param_name, param_encoding in layer.export_param_encodings().items(): param_name = layer_name + '.' + orig_param_name if param_encoding is None: continue if param_name not in valid_param_set: logger.error('Param tensor {%s} not found in valid param set', param_name) continue param_encodings[param_name] = param_encoding tensor_to_quantizer_map[param_name] = layer.param_quantizers[orig_param_name] @staticmethod def _update_encoding_dicts_for_layer(layer: ExportableQuantModule, layer_name: str, activation_encodings_onnx: Dict, activation_encodings_torch: Dict, param_encodings: Dict, op_to_io_tensor_map: Dict, valid_param_set: set, propagate_encodings: bool, tensor_to_consumer_map: Dict[str, str], layers_to_onnx_op_names: Dict[str, str], tensor_to_quantizer_map: Dict): """ Add given layer param and activation encodings to respective dictionaries to be used for exporting encodings :param layer: layer as torch.nn.Module :param layer_name: Name of the layer :param activation_encodings_onnx: dictionary of activation encodings which maps onnx attribute to encodings :param activation_encodings_torch: dictionary of activation encodings which maps pytorch names to encodings :param param_encodings: dictionary of param encodings :param op_to_io_tensor_map: ONNX or Torch Script map of layer name to it's input/output tensors :param valid_param_set: a set of valid param input names in model :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. :param tensor_to_consumer_map: Dictionary mapping tensor names to op names which consume the tensor :param layers_to_onnx_op_names: Dictionary mapping PyTorch layer names to names of corresponding ONNX ops """ if isinstance(layer, ExportableQuantModule): # -------------------------------------- # Update encodings for Input activations # -------------------------------------- QuantizationSimModel._update_encoding_dict_for_input_activations(layer, layer_name, op_to_io_tensor_map, activation_encodings_onnx, activation_encodings_torch, layers_to_onnx_op_names, tensor_to_quantizer_map) # --------------------------------------- # Update encodings for output activations # --------------------------------------- QuantizationSimModel._update_encoding_dict_for_output_activations(layer, layer_name, op_to_io_tensor_map, activation_encodings_onnx, activation_encodings_torch, propagate_encodings, tensor_to_consumer_map, layers_to_onnx_op_names, tensor_to_quantizer_map) # --------------------------- # Update encodings for Params # --------------------------- QuantizationSimModel._update_param_encodings_dict_for_layer(layer, layer_name, param_encodings, valid_param_set, tensor_to_quantizer_map) if isinstance(layer, QcQuantizeRecurrent): # Update encodings for Recurrent layers QuantizationSimModel._update_encoding_dict_for_recurrent_layers(layer, layer_name, op_to_io_tensor_map, activation_encodings_onnx, param_encodings, propagate_encodings, tensor_to_quantizer_map) @staticmethod def find_op_names_for_layer(layer_name: str, op_to_io_tensor_map: Dict, tensor_to_consumer_map: Optional[Dict[str, str]], layers_to_onnx_op_names: Optional[Dict[str, str]]) -> Tuple[List[str], List[str]]: """ This function returns the last ONNX op and the list of ONNX Ops that were mapped from a PyTorch Op. :param layer_name: Name of the PyTorch layer :param op_to_io_tensor_map: ONNX or Torch Script map of layer name to it's input/output tensors :param tensor_to_consumer_map: Dictionary mapping tensor names to op names which consume the tensor :param layers_to_onnx_op_names: Dictionary mapping PyTorch layer names to names of corresponding ONNX ops :return: tuple(end op names, all op names) """ if version.parse(torch.__version__) < version.parse("1.13.0") or not onnx_utils.EXPORT_TO_ONNX_DIRECT: op_names = [key for key in op_to_io_tensor_map if (key.startswith(layer_name) and layer_name+'#' in key) or key == layer_name] if len(op_names) == 1: return op_names, op_names end_op_names = [op_name for op_name in op_names if op_name.endswith('.end')] return end_op_names, op_names assert tensor_to_consumer_map is not None assert layers_to_onnx_op_names is not None # Get all ops which correspond to the current PyTorch layer being processed. op_names = layers_to_onnx_op_names.get(layer_name, []) op_name_set = set(op_names) end_op_names = [] end_op_names_set = set() for op_name in op_names: # Loop through outputs of each op and check whether the output leads to an op not in for output in op_to_io_tensor_map[op_name].outputs: assert output in tensor_to_consumer_map.keys() if not tensor_to_consumer_map[output]: if op_name not in end_op_names_set: # output has no consumers, and can either be a model output or an unused op output. # List it as an end_op_name all the same. end_op_names.append(op_name) end_op_names_set.add(op_name) else: for consumer in tensor_to_consumer_map[output]: if consumer not in op_name_set and op_name not in end_op_names_set: end_op_names.append(op_name) end_op_names_set.add(op_name) return end_op_names, op_names @staticmethod def _update_encoding_dict_for_output_activations(layer: ExportableQuantModule, layer_name: str, op_to_io_tensor_map: Dict, activation_encodings_onnx: Dict, activation_encodings_torch: Dict, propagate_encodings: bool, tensor_to_consumer_map: Dict[str, str], layers_to_onnx_op_names: Dict[str, str], tensor_to_quantizer_map: Dict): # pylint: disable=too-many-locals output_tensors, propagate_tensors = QuantizationSimModel._get_layer_activation_tensors(layer_name, op_to_io_tensor_map, tensor_to_consumer_map, layers_to_onnx_op_names) output_encodings = layer.export_output_encodings() if len(output_tensors) != len(output_encodings): logger.warning("number of output quantizers: %d available for layer: %s " "doesn't match with number of output tensors: %d", len(output_encodings), layer_name, len(output_tensors)) for index, (output_tensor, encoding) in enumerate(zip(output_tensors, output_encodings)): if encoding is not None: activation_encodings_onnx[output_tensor] = encoding tensor_to_quantizer_map[output_tensor] = layer.output_quantizers[index] if layer_name not in activation_encodings_torch: activation_encodings_torch[layer_name] = {} if QUANTIZER_TYPE_OUTPUT not in activation_encodings_torch[layer_name]: activation_encodings_torch[layer_name][QUANTIZER_TYPE_OUTPUT] = {} activation_encodings_torch[layer_name][QUANTIZER_TYPE_OUTPUT][index] = encoding[0] if propagate_encodings: valid_encodings = [enc for enc in output_encodings if enc is not None] if valid_encodings: encoding = valid_encodings[0] for activation_tensor in propagate_tensors: activation_encodings_onnx[activation_tensor] = utils.get_propagated_encoding_dict(encoding) @staticmethod def _update_encoding_dict_for_input_activations(layer: ExportableQuantModule, layer_name: str, op_to_io_tensor_map: Dict, activation_encodings_onnx: Dict, activation_encodings_torch: Dict, layers_to_onnx_op_names: Dict[str, str], tensor_to_quantizer_map: Dict): input_encodings = layer.export_input_encodings() # skip layer if it has no input encodings. if all(encoding is None for encoding in input_encodings): return input_tensors = QuantizationSimModel._get_layer_input_tensors(layer, layer_name, op_to_io_tensor_map, layers_to_onnx_op_names) if len(input_tensors) != len(input_encodings): logger.warning("number of input quantizers: %d available for layer: %s " "doesn't match with number of input tensors: %d", len(input_encodings), layer_name, len(input_tensors)) for index, (input_tensor, encoding) in enumerate(zip(input_tensors, input_encodings)): if encoding is not None: activation_encodings_onnx[input_tensor] = encoding # TODO: Modify this so quantsim does not make assumptions about the length of input_quantizers tensor_to_quantizer_map[input_tensor] = layer.input_quantizers[min(index, len(layer.input_quantizers) - 1)] # Check if layer exists in the pytorch encoding dictionary if layer_name not in activation_encodings_torch: activation_encodings_torch[layer_name] = {} if QUANTIZER_TYPE_INPUT not in activation_encodings_torch[layer_name]: activation_encodings_torch[layer_name][QUANTIZER_TYPE_INPUT] = {} # Store encodings for a particular index so that they can be used to check if a quantizer was # enabled or not activation_encodings_torch[layer_name][QUANTIZER_TYPE_INPUT][index] = encoding[0] @staticmethod def _get_layer_input_tensors(layer: torch.nn.Module, layer_name: str, op_to_io_tensor_map: Dict, layers_to_onnx_op_names: Dict[str, str] = None) -> List[str]: """ This function returns the list of input tensor names mapped from a PyTorch Op. :param layer: layer as torch.nn.Module :param layer_name: Name of the PyTorch layer :param op_to_io_tensor_map: ONNX or Torch Script map of layer name to it's input/output tensors :param layers_to_onnx_op_names: Dictionary mapping PyTorch layer names to names of corresponding ONNX ops :return: list of input tensor names. """ param_inputs = [layer_name + '.' + param_name for param_name, _ in layer.named_parameters()] if version.parse(torch.__version__) < version.parse("1.13.0") or not onnx_utils.EXPORT_TO_ONNX_DIRECT: start_op_names = [key for key in op_to_io_tensor_map if (key.startswith(layer_name) and '#0' in key) or key == layer_name] else: assert layers_to_onnx_op_names is not None op_names = layers_to_onnx_op_names.get(layer_name, []) op_name_set = set(op_names) start_op_names = set() for op_name in op_names: # For each op's inputs, if the input comes from an op not associated with this layer, add it to # start_op_names. for inp in op_to_io_tensor_map[op_name].inputs: if inp not in op_name_set: start_op_names.add(op_name) input_tensors = [] input_tensors_set = set() for name in start_op_names: for input_tensor in op_to_io_tensor_map[name].inputs: if input_tensor not in param_inputs and input_tensor not in input_tensors_set: input_tensors.append(input_tensor) input_tensors_set.add(input_tensor) return input_tensors @classmethod def _get_layer_activation_tensors(cls, layer_name: str, op_to_io_tensor_map: Dict, tensor_to_consumer_map: Dict[str, str] = None, layers_to_onnx_op_names: Dict[str, str] = None) -> Tuple[List[str], List[str]]: """ This function returns the list of output tensor and intermediate tensor names mapped from a PyTorch Op. :param layer_name: Name of the PyTorch layer :param op_to_io_tensor_map: ONNX or Torch Script map of layer name to it's input/output tensors :param tensor_to_consumer_map: Dictionary mapping tensor names to op names which consume the tensor :param layers_to_onnx_op_names: Dictionary mapping PyTorch layer names to names of corresponding ONNX ops :return: tuple containing list of output tensor names and list of intermediate tensors """ end_op_names, op_names = cls.find_op_names_for_layer(layer_name, op_to_io_tensor_map, tensor_to_consumer_map, layers_to_onnx_op_names) if len(end_op_names) > 1: output_op_map_str = cls._get_output_map_str(end_op_names, layer_name, op_to_io_tensor_map) logger.info("layer_name: %s, has multiple output onnx ops: %s", layer_name, output_op_map_str) output_tensors = [] intermediate_tensors = [] for name in op_names: if name in end_op_names: output_tensors.extend(op_to_io_tensor_map[name].outputs) else: intermediate_tensors.extend(op_to_io_tensor_map[name].outputs) return output_tensors, intermediate_tensors @staticmethod def _get_output_map_str(end_op_names, layer_name, op_to_io_tensor_map) -> str: """ This function returns formatted list of output ops tensor mapping :param end_op_names: list of output onnx ops :param layer_name: Name of the PyTorch layer :param op_to_io_tensor_map: ONNX or Torch Script map of layer name to it's input/output tensors :return: formatted string with output ops and their corresponding output count. """ num_output_ops = len(end_op_names) op_map_str = ','.join([f'{name.replace(layer_name, "")}:{len(op_to_io_tensor_map[name].outputs)}' for name in end_op_names[:5]]) if num_output_ops > 5: op_map_str += ', ..' return f'{num_output_ops},[{op_map_str}]' @staticmethod def _update_encoding_dict_for_recurrent_layers(layer: torch.nn.Module, layer_name: str, op_to_io_tensor_map: Dict, activation_encodings_onnx: Dict, param_encodings: Dict, propagate_encodings: bool, tensor_to_quantizer_map: Dict): """ :param layer: :param layer_name: :param op_to_io_tensor_map: :param activation_encodings_onnx: :param param_encodings: :param propagate_encodings: :return: """ # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-locals onnx_activations_to_quantizers, onnx_params_to_quantizers = \ layer.get_activation_param_quantizers_for_onnx_tensors(op_to_io_tensor_map[layer_name + '#root_node']) # ------------------ # Activations # ------------------ quantizer = None for tensor, quantizer in onnx_activations_to_quantizers.items(): quantizer_encoding = _get_encoding_by_quantizer(quantizer) encoding = QuantizationSimModel._create_encoding_dict(quantizer_encoding, quantizer, propagate_encodings=False) activation_encodings_onnx[tensor] = [encoding] tensor_to_quantizer_map[tensor] = quantizer if propagate_encodings and quantizer: _, op_names = QuantizationSimModel.find_op_names_for_layer(layer_name, op_to_io_tensor_map, None, None) for op_name in op_names: io_tensor_list = op_to_io_tensor_map[op_name] if not isinstance(io_tensor_list, list): io_tensor_list = [io_tensor_list] for io_tensors in io_tensor_list: if io_tensors.outputs: for output_tensor in io_tensors.outputs: if output_tensor in onnx_activations_to_quantizers: continue quantizer_encoding = _get_encoding_by_quantizer(quantizer) encoding = QuantizationSimModel._create_encoding_dict(quantizer_encoding, quantizer, True) activation_encodings_onnx[output_tensor] = [encoding] tensor_to_quantizer_map[output_tensor] = quantizer # ------------------ # Params # ------------------ for tensor, quantizer in onnx_params_to_quantizers.items(): quantizer_encoding = _get_encoding_by_quantizer(quantizer) encoding = QuantizationSimModel._create_encoding_dict(quantizer_encoding, quantizer, propagate_encodings=False) param_encodings[tensor] = [encoding] tensor_to_quantizer_map[tensor] = quantizer @staticmethod def _get_qc_quantized_layers(model) -> List[Tuple[str, QcQuantizeWrapper]]: quantized_layers = [] for name, module in model.named_modules(): if isinstance(module, (QcQuantizeRecurrent, LazyQuantizeWrapper, ExportableQuantModule)): quantized_layers.append((name, module)) return quantized_layers @staticmethod def _is_quantizable_module(module_ref): """ Function to check if a module is eligible for quantization. If the module is NOT an PyTorch module type or if the module was already Quantized or if the module is in the layers_to_ignore list, don't quantize. """ if isinstance(module_ref, unquantizable_modules): logger.debug("Module %s not quantizable", module_ref) return False logger.debug("Module %s is quantizable", module_ref) return True def _create_quantizer_module(self, module_to_quantize: torch.nn.Module, num_inout_tensors: Dict, data_type: QuantizationDataType) -> torch.nn.Module: """Instantiates wrapper based on quant scheme """ assert self._quant_scheme in [QuantScheme.post_training_tf, QuantScheme.post_training_tf_enhanced, QuantScheme.training_range_learning_with_tf_enhanced_init, QuantScheme.training_range_learning_with_tf_init, QuantScheme.post_training_percentile] # We lookup the number of input and output tensors already determined # Special case, we are adding a wrapper for a module not in the forward pass: Use default of 1, 1 num_in_tensors, num_out_tensors = num_inout_tensors.get(module_to_quantize, (1, 1)) # Set quantizer to be a module replacer if it is in qc_quantize_modules_dict, otherwise set as # StaticGridQuantWrapper. quantizer_wrapper_type = qc_quantize_modules_dict.get(type(module_to_quantize), LazyQuantizeWrapper) if quantizer_wrapper_type == LazyQuantizeWrapper: quant_scheme_for_initialization = self._quant_scheme else: quant_scheme_for_initialization = utils.get_v1_quant_scheme_for_initialization(self._quant_scheme) # TODO add quant_scheme_for_initialization for FP8 case quantized_module = quantizer_wrapper_type(module_to_quantize, self._default_param_bw, self._default_output_bw, self._rounding_mode, quant_scheme_for_initialization, num_inputs=num_in_tensors, num_outputs=num_out_tensors, data_type=data_type) return quantized_module def _add_quantization_wrappers(self, module, num_inout_tensors, default_data_type: QuantizationDataType): """Recursively add quantization wrappers to all appropriate modules starting with module """ for module_name, module_ref in module.named_children(): logger.debug("nn.Module found : %s", module_ref) # check if the module already quantized then ignore if not self._is_quantizable_module(module_ref): continue # check if the module is leaf or not if utils.is_leaf_module(module_ref): # Create a new QcQuantize wrapper module quantized_module = self._create_quantizer_module(module_ref, num_inout_tensors, default_data_type) setattr(module, module_name, quantized_module) # recursively call children modules else: self._add_quantization_wrappers(module_ref, num_inout_tensors, default_data_type) def _set_tensor_quantizers_for_consts(self, inout_tensor_shape_dict: Dict): """ Identify and set is_const for tensor quantizers which correspond to constant inputs in the model. """ if self.connected_graph is not None: for _, qc_quantize_wrapper in self.quant_wrappers(): if isinstance(qc_quantize_wrapper, (QcQuantizeWrapper, LazyQuantizeWrapper)): # Only handling QcQuantWrappers and not QcQuantizeRecurrents # pylint: disable=protected-access conn_graph_op = self.connected_graph._module_to_op_dict.get(qc_quantize_wrapper._module_to_wrap) input_tensor_shape_list = inout_tensor_shape_dict.get(qc_quantize_wrapper._module_to_wrap) if conn_graph_op is not None: for idx, (input_quantizer, inp) in \ enumerate(zip(qc_quantize_wrapper.input_quantizers, conn_graph_op.inputs)): input_quantizer.is_const = inp.is_const input_quantizer.is_singleton = (input_tensor_shape_list is not None \ and input_tensor_shape_list[0][idx] is not None \ and input_tensor_shape_list[0][idx].numel() == 1) @staticmethod def _create_encoding_dict(encoding: libpymo.TfEncoding, quantizer, propagate_encodings: bool) -> Union[Dict, None]: """ Create encoding dictionary from encoding object :param encoding: Encoding of the quantizer :param quantizer: Tensor Quantizer :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. :return: Encoding Dictionary """ return utils.create_encoding_dict(encoding, quantizer, propagate_encodings) @classmethod def _remove_quantization_wrappers(cls, starting_module, list_of_modules_to_exclude): """ Recursively remove quantization wrappers from all appropriate modules starting with a given module :param starting_module: Module to recursive search downstream from :param list_of_modules_to_exclude: List of torch modules to remove quantization wrappers from (if present) :return: None """ for module_name, module_ref in starting_module.named_children(): # If modules is in the exclude list, remove the wrapper if module_ref in list_of_modules_to_exclude: if isinstance(module_ref, ExportableQuantModule): # Remove the wrapper, gets auto-deleted # pylint: disable=protected-access setattr(starting_module, module_name, module_ref.get_original_module()) elif isinstance(module_ref, QcQuantizeStandAloneBase): setattr(starting_module, module_name, torch.nn.Identity()) elif isinstance(module_ref, QcQuantizeRecurrent): module_ref.update_params() setattr(starting_module, module_name, module_ref.module_to_quantize) # Recursively call children modules if present if not utils.is_leaf_module(module_ref): cls._remove_quantization_wrappers(module_ref, list_of_modules_to_exclude) @staticmethod def get_original_model(model: torch.nn.Module): """ This function returns the model with all quantization wrappers removed. :return: Model without quantization wrappers. """ original_model = copy.deepcopy(model) # pylint: disable=unnecessary-comprehension all_modules_in_original_model = [module for module in original_model.modules()] QuantizationSimModel._remove_quantization_wrappers(original_model, all_modules_in_original_model) return original_model def _get_leaf_module_to_name_map(self): """ Returns a mapping from leaf modules to module name, where any ExportableQuantModule is considered a leaf module, and is therefore not further recursed (since we do not want to retrieve all internal quantizers/modules). """ def recursively_populate_map(starting_module, module_map, start_str): for name, module in starting_module.named_children(): if isinstance(module, ExportableQuantModule) or utils.is_leaf_module(module): module_map[module] = start_str + name else: recursively_populate_map(module, module_map, start_str + name + ".") module_to_name_map = {} recursively_populate_map(self.model, module_to_name_map, "") return module_to_name_map def _add_inputs_hook(self, hooks): module_to_name_map = self._get_leaf_module_to_name_map() def inputs_hook(module_ref, inputs, _): # Need to remove hook here, otherwise the jit trace of CustomMarker with module ref will error since the # hook will be recursively hit. hooks[module_ref].remove() del hooks[module_ref] module_name = module_to_name_map[module_ref] if isinstance(module_ref, ExportableQuantModule): module_ref = module_ref.get_original_module() marker_layer = torch.jit.trace(CustomMarker(module_ref, module_name, 'True'), inputs) self._module_marker_map[module_name] = marker_layer for name, module in self.model.named_modules(): if name in module_to_name_map.values(): hooks[module] = module.register_forward_hook(inputs_hook) def _validate_module_marker_map(self): """ Check to make sure all leaf modules have traced Custom Markers associated with them. """ all_leaf_modules = self._get_leaf_module_to_name_map().values() missing_inputs_entries = [] for leaf_module in all_leaf_modules: if leaf_module not in self._module_marker_map.keys(): missing_inputs_entries.append(leaf_module) if missing_inputs_entries: logger.info('In order to export a conditional model, all leaf modules need to be run with some input so ' 'torch trace can be done.') logger.info('The following modules were not run during compute encodings:') logger.info(missing_inputs_entries) logger.info('Please use the sim.run_modules_for_traced_custom_marker(<module list>, dummy_input) api to ' 'pass dummy inputs to these modules.') logger.info('Modules which can take the same dummy input can be ' 'grouped as a list. For groups of modules with different input shapes, please call ' 'sim.run_modules_for_traced_custom_markers() for each group.') logger.info('Exiting quantsim export early.') return False return True def _export_conditional(self, path: str, filename_prefix: str, dummy_input: Union[torch.Tensor, Tuple], forward_pass_callback: Callable, forward_pass_callback_args, onnx_export_args: Union[OnnxExportApiArgs, None] = OnnxExportApiArgs(), propagate_encodings: bool = False): """ Export function for conditional models. Performs another round of forward passes to create and store traced CustomMarker info for each leaf module to be later used when scripting the model for export. :param path: path where to store model pth and encodings :param filename_prefix: Prefix to use for filenames of the model pth and encodings files :param dummy_input: Dummy input to the model. Used to parse model graph. It is required for the dummy_input to be placed on CPU. :param forward_pass_callback: A callback function that simply runs forward passes on the model. This callback function should use representative data for the forward pass, so the calculated encodings work for all data samples. This callback internally chooses the number of data samples it wants to use for calculating encodings. The callback should exercise all paths of the conditional model. :param forward_pass_callback_args: These argument(s) are passed to the forward_pass_callback as-is. Up to the user to determine the type of this parameter. E.g. could be simply an integer representing the number of data samples to use. Or could be a tuple of parameters or an object representing something more complex. If set to None, forward_pass_callback will be invoked with no parameters. :param onnx_export_args: onnx specific export arguments :param propagate_encodings: If True, encoding entries for intermediate ops (when one PyTorch ops results in multiple ONNX nodes) are filled with the same BW and data_type as the output tensor for that series of ops. :return: None """ self._is_conditional = True if onnx_export_args is None: onnx_export_args = OnnxExportApiArgs() # If model is conditional, we need to create traced CustomMarkers to be used later during export. Create hooks # here for creating a traced CustomMarker for each leaf module during the forward pass callback. hooks = {} if self._is_conditional: self._add_inputs_hook(hooks) with utils.in_eval_mode(self.model), torch.no_grad(): _ = forward_pass_callback(self.model, forward_pass_callback_args) # Any hooks that were hit during forward pass callback would have removed themselves. Remove the remaining # hooks that were not run. for h in hooks.values(): h.remove() # Check that all paths were exercised if not self._validate_module_marker_map(): return self.export(path, filename_prefix, dummy_input, onnx_export_args, propagate_encodings) def configure_quantization_ops(self, config_file: str, default_output_bw: int, default_param_bw: int, default_data_type: QuantizationDataType) -> QuantSimConfigurator: """ Configure inserted quantize ops using config file and fill in all the supported kernels :param config_file: Configuration file to use :param default_output_bw: default bitwidth for activations :param default_param_bw: default bitwidth for params :param default_data_type: default data type :return: QuantSimConfigurator object """ if self.connected_graph is None: error_msg = ('A connected graph failed to be built.\n' 'Unable to proceed with automatically configuring quantization ops using the config file.\n' 'Please configure quantization ops manually by redefining ' 'QuantizationSimModel.configure_quantization_ops()') logger.error(error_msg) raise AssertionError(error_msg) return QuantSimConfigurator(self.model, self.connected_graph, config_file, default_output_bw, default_param_bw, default_data_type) def load_encodings(self, encodings: Union[Mapping, str, os.PathLike], strict: bool = True, partial: bool = True, requires_grad: Optional[bool] = None, allow_overwrite: bool = True): """ :param encodings: Encoding dictionary or path to the encoding dictionary json file. :param bool strict: If True, an error will be thrown if the model doesn't have a quantizer corresponding to the specified encodings. :param bool partial: If True, the encoding will be interpreted as a partial encoding, and the dangling quantizers with no corresponding encoding will be kept untouched. Otherwise, the dangling quantizers will be removed from the model. :param bool requires_grad: Whether or not the quantization parameters loaded from the encodings require gradient computation during training. If None, ``requires_grad`` flag of the quantization parameters will be kept unchanged. :param bool allow_overwrite: Whether or not the quantization parameters loaded from the encodings can be overwriiten by :ref:`compute_encodings` or another :ref:`load_encodings`. If None, whether the quantizer is overwrieable will be kept unchanged. """ if isinstance(encodings, (str, os.PathLike)): with open(encodings, mode='r') as f: encodings = json.load(f) self._load_encodings_impl(encodings, strict, partial, requires_grad, allow_overwrite) def _load_encodings_impl(self, encodings: Mapping, strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): if 'param_encodings' not in encodings: param_encodings = encodings activation_encodings = {} logger.warning("An older AdaRound exported encoding file type has been detected! " "Please regenerate it using the AdaRound export function from the latest " "AIMET (version 1.32 or higher) if necessary. " "Support for this encoding file will be deprecated in AIMET version 1.33.0.") else: param_encodings = encodings.get('param_encodings', {}) activation_encodings = encodings.get('activation_encodings', {}) if not param_encodings and not activation_encodings: raise RuntimeError if strict is True: encoding_keys = param_encodings.keys() | activation_encodings.keys() model_keys = set(name.replace("._module_to_wrap", "") for name, _ in chain(self.model.named_modules(), utils.get_all_named_parameters(self.model))) keys_not_found = encoding_keys - model_keys if keys_not_found: keys_not_found = ', '.join(sorted(keys_not_found)) msg = f"Encoding dictionary contains modules/parameters that doesn't exist in the model: {keys_not_found}" raise RuntimeError(msg) if param_encodings is not None: self._set_param_encodings(param_encodings, strict, partial, requires_grad, allow_overwrite) if activation_encodings is not None: self._set_activation_encodings(activation_encodings, strict, partial, requires_grad, allow_overwrite) @deprecated(f"Use {load_encodings.__qualname__} instead.") def load_and_freeze_encodings(self, encoding_path: str, ignore_when_quantizer_disabled: bool = False): """ Functionality to set encodings (both activation and parameter) as per the given encodings JSON file and freeze them. .. note: The encodings JSON file should be the {prefix}_torch.encodings json exported during sim.export() :param encoding_path: JSON file path from where to load the encodings. :param ignore_when_quantizer_disabled: ignore raising RuntimeError while setting encodings, when quantizers are disabled. """ self.load_encodings(encoding_path, strict=not ignore_when_quantizer_disabled, partial=True, requires_grad=False, allow_overwrite=False) def _set_param_encodings(self, encoding_dict: Mapping, strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): for name, quant_module in self.model.named_modules(): if isinstance(quant_module, ExportableQuantModule): param_encoding = { param_name: encoding_dict[f'{name}.{param_name}'] for param_name, _ in quant_module.param_quantizers.items() if f'{name}.{param_name}' in encoding_dict } quant_module.import_param_encodings(param_encoding, strict, partial, requires_grad, allow_overwrite) def _set_activation_encodings(self, activation_encoding_dict: Mapping, strict: bool, partial: bool, requires_grad: Optional[bool], allow_overwrite: bool): for module_name, module in self.model.named_modules(): if not isinstance(module, ExportableQuantModule): continue try: input_encoding = activation_encoding_dict[module_name]['input'] except KeyError: input_encoding = {} module.import_input_encodings(input_encoding, strict, partial, requires_grad, allow_overwrite) try: output_encoding = activation_encoding_dict[module_name]['output'] except KeyError: output_encoding = {} module.import_output_encodings(output_encoding, strict, partial, requires_grad, allow_overwrite) @deprecated(f"Use {load_encodings.__qualname__} instead.") def set_and_freeze_param_encodings(self, encoding_path: str): """ Set and freeze parameter encodings from encodings JSON file. .. note: The loaded json file should contain ONLY weight encodings. This is different from the json file used in `load_and_freeze_encodings`, which contains both weight and activation dictionaries. :param encoding_path: path from where to load parameter encodings file """ with open(encoding_path, mode='r') as f: encodings = json.load(f) if 'activation_encodings' in encodings: del encodings['activation_encodings'] self.load_encodings(encodings, strict=True, partial=True, requires_grad=False, allow_overwrite=False) def named_qmodules(self): """Generator that yields all quantized modules in the model and their names """ for name, module in self.model.named_modules(): if isinstance(module, (QcQuantizeRecurrent, LazyQuantizeWrapper, ExportableQuantModule)): yield name, module def qmodules(self): """Generator that yields all quantized modules in the model """ yield from (module for _, module in self.named_qmodules()) quant_wrappers = named_qmodules def run_modules_for_traced_custom_marker(self, module_list: List[torch.nn.Module], dummy_input): """ Given a list of modules to run and dummy input for the module, create a traced CustomMarker for each module and store it in the module_marker map. The same dummy input will be used for all modules. :param module_list: List of modules to create traced CustomMarkers for :param dummy_input: Dummy input for all modules """ module_to_name_map = self._get_leaf_module_to_name_map() for module in module_list: # Only perform init and trace if the given module is a leaf module, and we have not recorded it before if module in module_to_name_map and module_to_name_map[module] not in self._module_marker_map: name = module_to_name_map[module] module = module.get_original_module() if isinstance(module, ExportableQuantModule) else module with utils.in_eval_mode(module), torch.no_grad(): marker_layer = torch.jit.trace(CustomMarker(module, name, True), dummy_input) self._module_marker_map[name] = marker_layer def _validate_supported_kernels_for_quantizers(self, action: SupportedKernelsAction): """ Validate supported kernels for all the Quantizers in the QuantSimModel :param action: The action to be performed when incorrect candidate is set in a quantizer """ def apply_act_param_rules(curr_candidate: QuantDtypeBwInfo, allowed_supported_kernels: List[QuantDtypeBwInfo], module_name): """ helper function to validate both activation and param against the supported_kernels passed :param curr_candidate: candidate of interest :param allowed_supported_kernels: List of supported kernels for the given module :param module_name: name of the module """ if action != SupportedKernelsAction.allow_error: for k in allowed_supported_kernels: if curr_candidate == k: return if action == SupportedKernelsAction.warn_on_error: logger.warning("candidate:%s is not under the supported_kernels for the module %s", curr_candidate, module_name) if action == SupportedKernelsAction.assert_on_error: error_msg = f'candidate: {curr_candidate} is not under the supported_kernels for the module {module_name}' raise RuntimeError(error_msg) def apply_act_rules(act: Tuple[int, QuantizationDataType], allowed_supported_kernels: List[QuantDtypeBwInfo], module_name): """ helper function to validate both activation only against the supported_kernels passed :param act: act of the candidate to be validated :param allowed_supported_kernels: List of supported kernels for the given module :param module_name: name of the module """ if action != SupportedKernelsAction.allow_error: for k in allowed_supported_kernels: if k.is_same_activation(act[1], act[0]): return if action == SupportedKernelsAction.warn_on_error: logger.warning("activation:%s is not under the supported_kernels for the module %s", act, module_name) if action == SupportedKernelsAction.assert_on_error: error_msg = f'activation: {act} is not under the supported_kernels for the module {module_name}' raise RuntimeError(error_msg) # retrieve all the act and param quantizer candidates, and validate them against supported_kernels for name, module in self.model.named_modules(): if isinstance(module, (QcQuantizeWrapper, LazyQuantizeWrapper)) and module.supported_kernels: supported_kernels = [] for supported_kernel in module.supported_kernels: # ((activation bitwidth, activation data type), (param bitwidth, param data type)) # TODO modify this once reformat_supported_kernels generates of type QuantDtypeBwInfo if isinstance(supported_kernel[1], tuple): supported_kernels.append( QuantDtypeBwInfo(supported_kernel[0][1], supported_kernel[0][0], supported_kernel[1][1], supported_kernel[1][0])) else: supported_kernels.append( QuantDtypeBwInfo(supported_kernel[1], supported_kernel[0])) act_candidates = [] param_candidate = () for quantizer in module.input_quantizers + module.output_quantizers: act_candidates.append((quantizer.bitwidth, quantizer.data_type)) if 'weight' in module.param_quantizers: param_candidate = (module.param_quantizers['weight'].bitwidth, module.param_quantizers['weight'].data_type) if param_candidate: # we need to check weights against all the activations for act_candidate in set(act_candidates): apply_act_param_rules(QuantDtypeBwInfo(act_candidate[1], act_candidate[0], param_candidate[1], param_candidate[0]), supported_kernels, name) else: for candidate in set(act_candidates): apply_act_rules(candidate, supported_kernels, name) @staticmethod def _replace_quantization_wrapper_with_native_torch_quantization_nodes(quant_sim_model, device: torch.device): """ Recursively remove quantization wrappers from all appropriate modules starting with a given module :param quant_sim_model: model for which QcQuantizeWrapper gets replaced with wrapped module using native torch quantization nodes :param device: device on which model is present :return: """ # Recursively replace quantization wrappers to native torch quantization nodes for module_name, module_ref in quant_sim_model.named_children(): # Create a native torch quantization node if isinstance(module_ref, QcQuantizeWrapper): embedded_module = NativeTorchQuantWrapper(module_ref, '_module_to_wrap', device) setattr(quant_sim_model, module_name, embedded_module) elif isinstance(module_ref, QcQuantizeRecurrent): logger.error('Do not support save model embedded native torch quantization nodes using QcQuantizeRecurrent.') raise AssertionError # Recursively call children modules if present if not utils.is_leaf_module(module_ref): QuantizationSimModel._replace_quantization_wrapper_with_native_torch_quantization_nodes(module_ref, device) # pylint: disable=protected-access, too-many-branches, too-many-locals def _apply_exception_rules(self): """ Apply exception rules to specific op. For example, a rule can override high bitwidth to Embedding module """ if self._hw_version not in {'V66', 'V68', 'V69', 'V73', 'V75', 'V79'}: return module_to_quant_wrapper = {} for _, wrapper in self.quant_wrappers(): module_to_quant_wrapper[wrapper._module_to_wrap] = wrapper for name, wrapper in self.quant_wrappers(): original_module = wrapper._module_to_wrap # A module that doesn't require exception rules if not isinstance(original_module, (torch.nn.Embedding, torch.nn.GroupNorm, elementwise_ops.MatMul)): continue if isinstance(original_module, torch.nn.Embedding): if self._hw_version not in {'V73', 'V75', 'V79'}: continue weight_quantizer = wrapper.param_quantizers['weight'] output_quantizer = wrapper.output_quantizers[0] weight_quantizer.bitwidth = output_quantizer.bitwidth weight_quantizer.use_symmetric_encodings = output_quantizer.use_symmetric_encodings elif isinstance(original_module, torch.nn.GroupNorm): if self._hw_version not in {'V73', 'V75', 'V79'}: continue if 'weight' in wrapper.param_quantizers: output_quantizer = wrapper.output_quantizers[0] for _, param_quantizer in wrapper.param_quantizers.items(): param_quantizer.bitwidth = output_quantizer.bitwidth param_quantizer.use_symmetric_encodings = output_quantizer.use_symmetric_encodings elif isinstance(original_module, elementwise_ops.MatMul): first_input_quantizer, second_input_quantizer = wrapper.input_quantizers op = self.connected_graph._module_to_op_dict[original_module] first_input_op = op.input_ops[0] if (not first_input_quantizer.enabled) else None second_input_op = op.input_ops[1] if (not second_input_quantizer.enabled) else None target_quantizer_for_first_input = self._get_target_quantizer(first_input_quantizer, first_input_op, module_to_quant_wrapper) target_quantizer_for_second_input = self._get_target_quantizer(second_input_quantizer, second_input_op, module_to_quant_wrapper) if not target_quantizer_for_second_input: continue # According to opdef for Matmul in HTP: # 16bit Weight(second input for dynamic MatMul) must have 16bit Activation(first input for dynamic MatMul). # 16bit Activation and 16bit Weight require minimum arch V73. # 16bit Weight must be symmetric quantized. # Below are the possible combinations for MatMul with 8/16 bitwidth: # If version is V73/V75: {input0->8, input1->8 symm/asymm} {input0->16 , input1->8 symm/asymm} {input0->16, input1->16 symmetric} # If version is lesser than V73: {input0->8, input1->8 symmetric} {input0->16, input1->8 symmetric} if self._hw_version in {'V66', 'V68', 'V69'}: target_quantizer_for_second_input.use_symmetric_encodings = True target_quantizer_for_second_input.bitwidth = 8 elif self._hw_version in {'V73', 'V75', 'V79'}: if target_quantizer_for_second_input.bitwidth == 16: target_quantizer_for_second_input.use_symmetric_encodings = True if target_quantizer_for_first_input: target_quantizer_for_first_input.bitwidth = 16 else: raise ValueError(f'Not expected hardware version to apply exception rules: {self._hw_version}') else: raise ValueError(f'A module not expected to apply exception rules: {name}') def _get_target_quantizer(self, input_quantizer: TensorQuantizer, input_op: Op, module_to_quant_wrapper: Dict[torch.nn.Module, QcQuantizeWrapper]) -> TensorQuantizer: """ Returns input quantizer if enabled otherwise returns closest enabled parent output quantizer. :param input_quantizer: Input quantizer :param input_op: Input Op :param module_to_quant_wrapper: Dict of module to quant wrapper :return: Target quantizer """ target_quantizer = None if input_quantizer.enabled: target_quantizer = input_quantizer elif input_op: closest_producer_wrapper = self._get_closest_producer_wrapper( input_op, module_to_quant_wrapper ) if closest_producer_wrapper: target_quantizer = closest_producer_wrapper.output_quantizers[0] else: logger.warning("The closest wrapper could not be found. MatMul exception rule does not apply. " "If you haven't used model preparer, consider using it.") return target_quantizer def _get_closest_producer_wrapper(self, op: Op, module_to_quant_wrapper: Dict[torch.nn.Module, QcQuantizeWrapper]) -> \ Optional[QcQuantizeWrapper]: """ Find the closest producer QcQuantizeWrapper and return it :param op: Target operation :param module_to_quant_wrapper: Module to Wrapper dictionary :return: QcQuantizerWrapper if exists else None """ def get_quant_wrapper() -> Optional[QcQuantizeWrapper]: module = op.get_module() return module_to_quant_wrapper.get(module) if module else None wrapper = get_quant_wrapper() if wrapper and wrapper.output_quantizers[0].enabled: return wrapper if wrapper and not wrapper.output_quantizers[0].enabled: # pylint: disable=no-else-return if len(op.input_ops) == 1: return self._get_closest_producer_wrapper(op.input_ops[0], module_to_quant_wrapper) else: logger.warning("A wrapper of %s with output quantization disabled has no input or more than one input exists. " "It's ambiguous to find the nearest producer in this case", str(op.get_module())) return None if not wrapper: if not op.input_ops: logger.warning("No input exists for navigation for traversal, it's not possible to find the closest producer") return None if len(op.input_ops) > 1: logger.warning("Multiple input ops exist, traversal to find closest producer is performed based on the first input") return self._get_closest_producer_wrapper(op.input_ops[0], module_to_quant_wrapper) @staticmethod def save_model_with_embedded_quantization_nodes(sim_model, path: str, filename_prefix: str, dummy_input: Union[torch.Tensor, Tuple], onnx_export_args: Optional[Union[OnnxExportApiArgs, Dict]] = None, export_to_torchscript: bool = False, is_conditional: bool = False): """ Export model embedded with native torch quantization nodes. These nodes will be exported as default onnx or torch script quantized nodes. :param sim_model: model with the quantsim wrappers :param path: path where to store model pth and encodings :param filename_prefix: Prefix to use for filenames of the model pth and encodings files :param dummy_input: Dummy input to the model. Used to parse model graph :param onnx_export_args: optional export argument with onnx specific overrides if not provide export via torchscript graph. Int16 can only be exported by torchscript :param export_to_torchscript: If True, export to torchscript. Export to onnx otherwise. Defaults to False. :param is_conditional: True if model is conditional, False otherwise :return: """ def _validate_torchquantizer(quant_sim_model): # To avoid non 8 bit TorchQuantizer are exported to ONNX for _, module in quant_sim_model.named_modules(): if isinstance(module, NativeTorchQuantWrapper): quantizers = module.input_quantizers + module.output_quantizers if 'weight' in module.param_quantizers: quantizers += [module.param_quantizers['weight']] if 'bias' in module.param_quantizers: quantizers += [module.param_quantizers['bias']] for quantizer in quantizers: if quantizer.enabled and quantizer.data_type == QuantizationDataType.int and quantizer.bitwidth != 8: raise ValueError('Only 8 bit quantizers are supported by exporting to ONNX model.' 'Please enable export_to_torchscript if you want to export non 8 bit quantizers.') model_filename = filename_prefix + '_embedded' + '.onnx' model_path = os.path.join(path, model_filename) quant_sim_model = copy.deepcopy(sim_model) device = utils.get_device(quant_sim_model) if isinstance(dummy_input, torch.Tensor): dummy_input = dummy_input.to(device) else: dummy_input = tuple([input.to(device) for input in dummy_input]) # pylint: disable=consider-using-generator QuantizationSimModel._replace_quantization_wrapper_with_native_torch_quantization_nodes(quant_sim_model, device) if export_to_torchscript: with utils.in_eval_mode(quant_sim_model), torch.no_grad(): trace = torch.jit.trace(quant_sim_model, dummy_input) ts_path = os.path.join(path, filename_prefix + '_embedded' + '.torchscript.pth') trace.save(ts_path) else: _validate_torchquantizer(quant_sim_model) OnnxSaver._export_model_to_onnx(quant_sim_model, dummy_input, model_path, is_conditional, onnx_export_args) # pylint: disable=protected-access def _enable_output_quantizers_for_specific_cast_ops(self, inout_tensors_dtypes: Dict[torch.nn.Module, Tuple[torch.dtype, torch.dtype]]): """ Enable output quantizer for Cast Ops where datatype of input tensor is int/bool and data type of output tensor is float. """ # pylint: disable=protected-access model_prefix = self.connected_graph._model_name + '.' torch_int_dtypes = {torch.int8, torch.int16, torch.int32, torch.int64, torch.bool, torch.uint8} torch_float_dtypes = {torch.float16, torch.float32, torch.float64} for module, inout_dtypes in inout_tensors_dtypes.items(): input_tensor_dtype = inout_dtypes[0] output_tensor_dtype = inout_dtypes[1] # pylint: disable=protected-access module_name = self.connected_graph._module_to_name[module].split(model_prefix)[-1] if input_tensor_dtype != output_tensor_dtype and input_tensor_dtype in torch_int_dtypes and output_tensor_dtype in torch_float_dtypes: logger.info("Enabling output quantizer for module %s", module_name) wrapped_module = getattr(self.model, module_name) for output_quantizer in wrapped_module.output_quantizers: setattr(output_quantizer, 'enabled', True) @staticmethod def _get_num_inout_tensors_from_tensor_shape_dict(inout_tensor_shape_dict): """ Convert tensor shape dictionary to num inout tensors dictionary """ num_inout_tensors = {} for module, inout_tensor_shape in inout_tensor_shape_dict.items(): input_tensor_shape_list, output_tensor_shape_list = inout_tensor_shape num_inout_tensors[module] = (len(input_tensor_shape_list), len(output_tensor_shape_list)) return num_inout_tensors
def save_checkpoint(quant_sim_model: QuantizationSimModel, file_path: str): """ This API provides a way for the user to save a checkpoint of the quantized model which can be loaded at a later point to continue fine-tuning e.g. See also load_checkpoint() :param quant_sim_model: QuantizationSimModel to save checkpoint for :param file_path: Path to the file where you want to save the checkpoint :return: None """ with open(file_path, 'wb') as file: pickle.dump(quant_sim_model, file) def load_checkpoint(file_path: str) -> QuantizationSimModel: """ Load the quantized model :param file_path: Path to the file where you want to save the checkpoint :return: A new instance of the QuantizationSimModel created after loading the checkpoint """ with open(file_path, 'rb') as file: sim = pickle.load(file) return sim def check_accumulator_overflow(model: torch.nn.Module, quant_bw: int, accum_bw: int): """ Checks for any potential for accumulator overflow across all the layers of the given model :param model: Model :param quant_bw: Bitwidth the layers are quantized at :param accum_bw: Bitwidth of the accumulator :return: Name of the layer with the most accumulator range used and range used """ most_accum_range_used = 0 most_accum_range_used_layer = None for layer_name, layer in model.named_modules(): if isinstance(layer, torch.nn.Conv2d): was_accum_range_exceeded, accum_range_used = get_conv_accum_bounds(layer.weight.detach().numpy(), quant_bw, accum_bw) if accum_range_used > most_accum_range_used: most_accum_range_used = accum_range_used most_accum_range_used_layer = layer_name if was_accum_range_exceeded: logger.info('Possible accumulator overflow for layer: %s', layer_name) if most_accum_range_used < 1: logger.info('No overflow detected. Layer %s had the most accumulator range used: %f%%', most_accum_range_used_layer, most_accum_range_used * 100) else: logger.info('Overflow detected. Layer %s had the most accumulator range used: %f%%', most_accum_range_used_layer, most_accum_range_used * 100) return most_accum_range_used_layer, most_accum_range_used @deprecated(f"Use {QuantizationSimModel.load_encodings.__qualname__} instead.") def load_encodings_to_sim(quant_sim_model: QuantizationSimModel, pytorch_encoding_path: str): """ Loads the saved encodings to quant sim model. The encoding filename to load should end in _torch.encodings, generated as part of quantsim export. :param quant_sim_model: Quantized model to load encodings for. Note: The model configuration should be the same as when encodings were exported. :param pytorch_encoding_path: Path of the encodings file to load. """ for module in quant_sim_model.model.modules(): if isinstance(module, QcQuantizeWrapper): module.set_mode(QcQuantizeOpMode.ACTIVE) quant_sim_model.load_encodings(pytorch_encoding_path, strict=True, partial=False, requires_grad=None, allow_overwrite=None) if isinstance(quant_sim_model, QuantizationSimModel): # Only for V1 quantsim quant_sim_model.replace_wrappers_for_quantize_dequantize() def has_valid_encodings(qc_quantize_op: ExportableQuantModule) -> bool: """ Utility for determining whether a given qc_quantize_op has any valid encodings. :param qc_quantize_op: Qc quantize op to evaluate :return: True if any input, param, or output quantizers have valid encodings, False otherwise """ if not isinstance(qc_quantize_op, (ExportableQuantModule, QcQuantizeRecurrent)): logger.error("has_valid_encodings only supported for QcQuantizeWrapper and QcQuantizeRecurrent " "modules") assert isinstance(qc_quantize_op, (ExportableQuantModule, QcQuantizeRecurrent)) if isinstance(qc_quantize_op, ExportableQuantModule): all_encodings = qc_quantize_op.export_output_encodings() + qc_quantize_op.export_input_encodings() + \ list(qc_quantize_op.export_param_encodings().values()) return any([encoding is not None for encoding in all_encodings]) # pylint: disable=consider-using-generator,use-a-generator input_quantizers = list(qc_quantize_op.input_quantizers.values()) output_quantizers = list(qc_quantize_op.output_quantizers.values()) for quantizer in input_quantizers + output_quantizers + list(qc_quantize_op.param_quantizers.values()): if quantizer.enabled and (quantizer.encoding is not None or quantizer.data_type is QuantizationDataType.float): return True return False def compute_encodings_for_sims(sim_list: List[QuantizationSimModel], forward_pass_callback: Callable, forward_pass_callback_args: Any): """ Compute encodings for a list of QuantSims. :param sim_list: List of QuantSims to compute encodings for. :param forward_pass_callback: A callback function that simply runs forward passes on the models. This callback function should use representative data for the forward pass, so the calculated encodings work for all data samples. This callback internally chooses the number of data samples it wants to use for calculating encodings. The callback expects exactly two inputs: - List of models which are involved in the forward pass. The models are taken directly from calling sim.model for each sim in sim_list, passed in the same order in which the sims appear in sim_list. - Forward pass callback args :param forward_pass_callback_args: These argument(s) are passed to the forward_pass_callback as-is. Up to the user to determine the type of this parameter. E.g. could be simply an integer representing the number of data samples to use. Or could be a tuple of parameters or an object representing something more complex. If set to None, forward_pass_callback will be invoked with no parameters. """ ctx_managers = [torch.no_grad()] for sim in sim_list: ctx_managers.append(utils.in_eval_mode(sim.model)) QuantizationSimModel.prepare_sim_for_compute_encodings(sim) with contextlib.ExitStack() as stack: for mgr in ctx_managers: stack.enter_context(mgr) _ = forward_pass_callback([sim.model for sim in sim_list], forward_pass_callback_args) for sim in sim_list: QuantizationSimModel.compute_layer_encodings_for_sim(sim)